Люминесценция органических, металл-органических и координационных соединений. Валентина Владимировна Уточникова

Читать онлайн книгу.

Люминесценция органических, металл-органических и координационных соединений - Валентина Владимировна Уточникова


Скачать книгу
aa3724af3b6168223b8ce6_jpg.jpeg"/>

      Введение

      Люминесценция – это явление, которое находит все больше применений в современном мире: достаточно упомянуть только получающее все большее распространение OLED-дисплеи, в основе работы которых – электролюминесценция металл-органических соединений. С помощью люминесцентных соединений производят защиту ценных бумаг – в первую очередь денег, – а также проводят диагностические исследования, поскольку люминесцентная биовизуализация обладает очень высоким разрешением.

      Поиск новых соединений для этих применений, как и поиск новых областей применения люминесцентных соединений, невозможен без понимания особенностей этого явления. Этому и посвящена данная книга.

      1. Свет и источники света

      Человеческое цветовосприятие

      Пожалуй, с самого момента изобретения колеса и даже с того времени, когда человек научился добывать огонь трением, фундаментальная наука существует неразрывно от прикладной. Именно поэтому основной акцент при изучении люминесценции делается именно на излучении в видимом диапазоне спектра: говоря «видимый», мы негласно подразумеваем «видимый здоровым человеческим глазом». Более формально под видимым диапазоном разные источники подразумевают область от 400…700 нм до 380…800 нм. Именно в этой области интенсивность солнечного спектра максимальна, и это не случайно: за миллионы лет развития наш глаз эволюционировал так, чтобы детектировать свет именно тех длин волн, интенсивность которых в спектре основного источника естественного освещения – солнца – максимальна.

      Прежде чем сравнивать различные источники света, рассмотрим механизм детектирования и обработки светового сигнала самым важным для нас оптическим прибором – человеческим глазом. Свет, падающий в глаз, вызывает фотохимические реакции в сетчатке, которая соответствует фотопленке. Нервный импульс, генерируемый в результате этой реакции, передается в мозг, генерируя зрительный сигнал. Сетчатка охватывает около двух третей внутреннего поверхность глазного яблока и представляет собой прозрачную пленку толщиной около 0,3 мм, со сложной структурой, включающей несколько типов клеток. Падающий свет попадает на сетчатку, как указано на рисунке, и достигает светочувствительного нейроэпителиального слоя. Оптический нерв, который расположен в передней части нейроэпителиального слоя, выполняет обработку сигнала.

      За восприятие цвета у нас отвечает два типа светочувствительных клеток – фоторецепторов: высоко чувствительные палочки, отвечающие за ночное зрение, и менее чувствительные колбочки, отвечающие за цветное зрение. В отличие от большинства животных, у которых существует два типа колбочек, чувствительных к синему и красному цвету, у приматов из-за перехода к дневному образу жизни в результате мутации появился третий цвет колбочек, чувствительных к зеленому цвету. Нормализованные спектры светочувствительности этих трех типов колбочек показаны на а. При этом интересно, что максимум кривой чувствительности палочек смещен относительно максимума кривой суммарной чувствительности колбочек в синюю область – именно поэтому в темноте лучше видны синие предметы.

      Рис. 1 а) Спектры чувствительности колбочек (С – синий, З – зеленый, К – красный) и б) кривая чувствительности палочек (фиолетовая кривая) и кривая суммарной чувствительности колбочек (синяя кривая)

      Наличие трех типов фоторецепторов приводит к трехкомпонентой системе человеческого зрения, причем, поскольку кривые их чувствительности перекрываются, свет различного спектрального состава может ощущение одинакового цвета. Это явление называется метамерией. Еще одним важным свойством человеческого зрения является время сбора информации, которое у разных животных различно. У человека оно составляет 20 мс, что должно быть учтено при создании дисплеев, картинка на которых для появления эффекта непрерывного изображения должна сменяться не реже одного раза каждые 20 мс.

      Рис. 2 Распределение палочек (сплошная линия) и колбочек (пунктирная линия)

      Осталось отметить, что распределение нейроэпителиальных клеток в сетчатке неравномерно. Колбочки сосредоточены в окрестности оптической оси в центральной ямке. Центральная ямка – это узкая область сетчатки, около 1,5 мм в диаметре, в которой расположено примерно 100000—150000 колбочек, поэтому максимальное разрешение достигается именно в этой узкой области. В отличие в колбочек, палочки практически отсутствуют в непосредственной близости от центральной ямки и распределены в широкой области сетчатки. Поскольку в темноте за зрение отвечают палочки, а не колбочки, звезды ночью более четко видны, если слегка сощурить глаза. Кроме того, поскольку в той части сетчатки, где проходит зрительный нерв, светочувствительные клетки отсутствуют, эта часть не может воспринимать свет и называется слепым пятном. Слепое пятно находится под углом 15º от оптической оси и составляет около 5º в ширину.

      1.1 Формирование


Скачать книгу