Secondary Metabolites of Medicinal Plants. Bharat Singh
Читать онлайн книгу.S.C., Singh, B., and Jain, R. (1999). Arnebins and antimicrobial activities of Arnebia hispidissima. Phytomedicine 6: 474–476.
26 Kashiwada, Y., Nishizawa, M., Yamagishi, T. et al. (1995). Anti-AIDS agents, 18. Sodium and potassium salts of caffeic acid tetramers from Arnebia euchroma as anti-HIV agents. J. Nat. Prod. 58: 392–400.
27 Katti, S.B., Shukla, Y.N., and Tandon, J.S. (1979). Arnebia derivatives for anticancer activity. Indian J. Chem. 18B: 440–442.
28 Khan, H.A., Chandrashekharan, I., and Ghanim, A. (1983). Naphthazarins from Arnebia hispidissima. Phytochemistry 22: 614–616.
29 Kirimer, N., Bozan, B., and Baser, K.H.C. (1995). A new naphthaquinone from the roots of Arnebia densiflora. Fitoterapia 66: 499–501.
30 Kirtikar, K.R. and Basu, B.D. (1967). Indian Medicinal Plants. Bombay: Popular Book Depot.
31 Kirtikar, K.R. and Basu, B.D. (1984). Indian Medicinal Plants. Dehradun, India: Bishen Singh Mahendra Pal Singh.
32 Kumar, R., Sharma, N., Malik, S. et al. (2011). Cell suspension culture of Arnebia euchroma (Royle) Johnston – a potential source of naphthoquinone pigments. J. Med. Plant Res. 5: 6048–6054.
33 Lin, G.S. (1981). Isolation and identification of alkannin-β, β-dimethylacrylate, a new naphthaquinone component in Arnebia euchroma Johnst. Yao Hsueh Tung Pao 16: 14–17.
34 Lin, Z.B., Chai, B.L., Wang, P. et al. (1980). Studies on the anti-inflammatory effect of chemical principle of “Zi Cao” (Arnebia euchroma). Pei-Ching-I Hsueh Yuan Hsueh Pao 12: 101–104.
35 Lu, F., Xiang, Q., and Zhu, F. (1983). Studies on the chemical constituents of Arnebia euchroma Johnst. Zhiwu Xuebao 25: 455–458.
36 Malik, S., Bhushan, S., Verma, S.C. et al. (2008). Production of naphthaquinone pigments in cell suspension cultures of Arnebia euchroma (Rotal) Johnston: influence of pH on growth kinetics and acetylshikonin. Med. Aromat. Plant Sci. Biotechnol. 2: 43–49.
37 Malik, S., Bhushan, S., Sharma, M., and Ahuja, P.S. (2011). Physico-chemical factors influencing the shikonin derivatives production in cell suspension cultures of Arnebia euchroma (Royle) Johnston, a medicinally important plant species. Cell Biol. Int. 35: 153–158.
38 Malik, S., Sharma, M., and Ahuja, P.S. (2016). An efficient and economic method for in vitro propagation of Arnebia euchroma using liquid culture system. Am. J. Biotechnol. Med. Res. 1: 19–25.
39 Manjkhola, S. and Dhar, U. (2002). Conservation and utilization of Arnebia benthamii (Wall. ex G. Don) Johnston – a high value Himalayan medicinal plant. Curr. Sci. 83: 484–488.
40 Nigam, S.K. and Mitra, C.R. (1964). Colouring matter of Arnebia hispidissima. Indian J. Appl. Chem. 27: 34–38.
41 Roeder, E. and Rengel-Meyer, B. (1993). Pyrrolizidine alkaloids from Arnebia euchroma. Planta Med. 59: 192.
42 Romanova, A.S., Bankovskii, A.I., and Boryaev, K.I. (1968). Extraction of shikonin. USSR 200: 737–739.
43 Saito, K. (1993). Genetic engineering in tissue culture of medicinal plants. Plant Tissue Cult. Lett. 10: 1–8.
44 Salim, M.L., Ammar, H.A., and Al-Oriquat, G. (1996). Isolation and structure elucidation of 3,6-dihydroxy-2-isovaleryl-1,4-benzoquinone. Bull. Fac. Pharm. 34: 231–234.
45 Sankawa, U., Ebizuka, Y., Miyazaki, T. et al. (1977). Antitumor activity of shikonin and its derivatives. Chem. Pharm. Bull. 25: 2392–2395.
46 Sharma, S.C., Shukla, Y.N., and Tandon, J.S. (1972). Constituents of Colocasia formicata, Sagittaria sagittifolia, Arnebia nobilis, Ipomea paniculata, Rhododendron niveum, Paspalum scrobiculatum, Mundulea serica and Duabanga sonneratioides. Phytochemistry 11: 2621–2623.
47 Shekhawat, M.S. (2012). Root cultures and in vitro production of alkannin in Arnebia hispidissima (Lehm). DC. Int. J. Rec. Sci. Res. 3: 374–377.
48 Shekhawat, M.S. and Shekhawat, N.S. (2011). Micropropagation of Arnebia hispidissima (Lehm). DC. and production of alkannin from callus and cell suspension culture. Acta Physiol. Plant 33: 1445–1450.
49 Shukla, Y.N., Tandon, J.S., Bhakuni, D.S., and Dhar, M.M. (1969). Chemical constituents of the antibiotic fraction of Arnebia nobilis. Experientia 25: 357–358.
50 Shukla, Y.N., Tandon, J.S., Bhakuni, D.S., and Dhar, M.M. (1971). Naphthaquinones of Arnebia nobilis. Phytochemistry 10: 1909–1915.
51 Shukla, Y.N., Tandon, J.S., and Dhar, M.M. (1973). Arnebin-7, a new naphthaquinone from Arnebia nobilis. Indian J. Chem. 11: 528–530.
52 Singh, B. and Singh, S. (2003). Antimicrobial activity of terpenoids from Trichodesma amplexicaule Roth. Phytother. Res. 17: 814–816.
53 Singh, B., Sahu, P.M., Jain, S.C., and Singh, S. (2004). Estimation of naphthaquinones from Arnebia hispidissima (Lehm.) DC. in vivo and in vitro I. Anti-inflammatory screening. Phytother. Res. 18: 154–159.
54 Srivastava, A., Shukla, Y.N., and Kumar, S. (1999). Chemistry and pharmacology of the genus Arnebia – a review. J. Med. Aromat. Plant Sci. 21: 1131–1134.
55 Subramaniam, S., Palanisamy, A., and Sivasubramanian, A. (2015). Box–Behnken designed adsorption based elution – unique separation process for commercially important acetyl shikonin from Arnebia nobilis. RSC Adv. 5: 6265–6270.
56 Syklowska-Baranek, K., Pietrosiuk, A., Naliwajski, M.R. et al. (2012a). Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev. Biol. Plant 48: 555–564.
57 Thompson, R.H. (1971). Naturally Occurring Quinones. New York: Academic Press.
58 Yang, M.H., Blunden, G., O'Neil, M.J., and Lewis, J.A. (1992). Tormentic acid and 2α-hydroxyursolic acid from Arnebia euchroma. Planta Med. 58: 227.
59 Yao, X.S., Ebizuka, Y., Noguchi, H. et al. (1983a). Structure of arnebinone, a novel monoterpenylbenzoquinone with inhibitory effect to prostaglandin biosynthesis. Tetrahedron Lett. 24: 3247–3250.
60 Yao, X.S., Ebizuka, Y., Noguchi, H. et al. (1983b). Structure of arnebinol, a new ansa-type monoterpenyl benzoid with inhibiting effect on prostaglandin biosynthesis. Tetrahedron Lett. 24: 2407–2410.
61 Yao, X.S., Ebizuka, Y., Noguchi, H. et al. (1991). Biologicaly active constituents of Arnebia euchroma: structure of arnebinol, an ansa-type monoterpenyl benzoid with inhibitory activity on prostaglandin biosynthesis. Chem. Pharm. Bull. 39: 2956–2961.
62 Zhang, M., Jin, Y., Guo, L., and Cai, Y. (1989). Shikonin in Arnebia euchroma and Lithospermum erythrorhizon. Zhong Caoyao 20: 449–454.
63 Zhu, F., Lu, F., and Xiang, G. (1984). Isolation of shikonin and its derivatives by HPLC. Sepu 1: 131–133.
2.13 Artemisia Species
2.13.1 Ethnopharmacological Properties and Phytochemistry
Several species of the Artemisia genus (Fam. – Asteraceae) are used widely in traditional system of medicine (Willcox 2009). The etymology of Artemisia evolved from the name of the Greek goddess Artemis who developed artemisian plants to Chiron the Centaur (Wright 2002; El-Sahhar 2010). The majority of the species of this genus are found in China, ex-USSR, Europe, and Japan (Wright 2002; Stach et al. 2007). The Artemisia annua is known for its antimalarial actions due to the presence of artemisinin and its derivatives (Cui and Su 2010; Lackie 2010). Artemisia herba-alba has been known for traditional medicine to treat toothache, intestinal and respiratory diseases, enteritis, and diabetes mellitus (Wright 2002). It is widely used as an antidote in Jordan to treat for snake bites and scorpion stings (Wright 2002) and also inhibits 100% of the hemolytic effect of the venoms (Sallal and Alkofahi 1996). Besides the antiprotozoal properties, A. annua also exhibits promising activity of apoptosis in human cancer cells (Singh and Lai 2004; Efferth 2007; Ferreira et al. 2010). It also possesses antioxidant (Crespo-Ortiz and Wei 2012); antibacterial, antiworm, analgesic, and antispasmodic (Laid et al. 2008; Mohamed et al. 2010); and