Ключевые идеи книги: Перезагрузка ИИ. Создание искусственного интеллекта, которому можно доверять. Гэри Маркус, Эрнест Дэвис. Smart Reading
Читать онлайн книгу.ми, в том числе с летальным исходом. Футурологи утверждают, что доктор Watson от IBM скоро заменит терапевтов, но пока он совершает диагностические ошибки, которых не сделал бы и студент-медик первого года обучения. Система распознавания лиц грозит тотальным контролем, однако Google Photos путает горилл и людей с темным цветом кожи.
Мы все больше доверяем машинам, которые пока слишком ненадежны. Миллиарды долларов сегодня тратятся на технологические решения, которые завтра приведут к заведомо неполным результатам. Мы получили больше, чем надеялись, но меньше, чем могли бы. Но мы продолжаем верить в ИИ. На наше восприятие компьютерного разума влияют три иллюзии:
1. Мы очеловечиваем ИИ, если тот проявляет хотя бы минимальные зачатки разумности. Забавно спрашивать «Алису» обо всем подряд, слушая ее неловкие шутки и неточные ответы, но стоит помнить, что голосовой помощник на самом деле нам не отвечает: он реагирует на слова-сигналы, а не на смыслы. Удобно довериться беспилотному автомобилю, увлекшись фильмом, пока машина везет тебя по адресу, но важно иметь в виду, что беспилотник пока очень плохо отличает препятствия на пути. Жуткий случай произошел с одним незадачливым владельцем Tesla, чей автомобиль проехал прямо под пересекавшим шоссе грузовым прицепом и убил своего хозяина.
2. Мы полагаем, что если компьютер справился с одной задачей, то справится и с другой, более трудной. Когда в 2016 году детище Google AlphaGo почти всухую обыграло суперигрока в го Ли Седоля, человечество было поражено: люди проиграли битву за интеллект. Однако на этом успехи AlphaGo закончились: она не умеет играть в другие игры и не может ставить себе иных интеллектуальных задач. Все, что умеет AlphaGo, – это играть в го.
3. Мы верим, что, если какое-то технологическое решение работает некоторое время, оно будет работать и дальше. Сравнительно легко создать демообразец автомобиля без водителя, который способен ехать по несложной трассе в хорошую погоду. Проблема – в его адаптивности к меняющимся условиям. Никто из разработчиков не даст гарантии, что езда по Бомбею в сильный дождь будет столь же успешной.
Действительно ли машины способны надежно выполнять задачи, которые мы им поручаем? Способны ли они правильно понимать наши приказы? Ответ на оба вопроса отрицательный. И он порождает третий вопрос: почему так вышло?
Сегодняшний ИИ стоит на двух китах: глубоком обучении и больших данных. Однако на заре создания искусственного разума, в 1960‐х, ни о первом, ни о втором речи не шло. Компьютеры были маломощные, интернета с его океаном информации не существовало. Первопроходцы ИИ шли по весьма трудоемкому пути: опираясь на накопленные знания и здравый смысл, они сначала формулировали тот или иной алгоритм действия для достижения какой-то цели, а потом превращали его в программный код – в буквальном смысле учили компьютер думать. Такой подход до сих пор используется в планировании маршрутов для роботов и навигации GPS. Однако постепенно идея закодированных вручную знаний была вытеснена концепцией машинного обучения с помощью нейросетей.
Понятие нейронной сети было описано еще в 1943 году психологом Уорреном Мак-Каллоком и математиком Уолтером Питтсом. В 1958 году психолог Фрэнк Розенблатт воплотил ее на практике: создал перцептрон – модель, содержащую около тысячи связанных друг с другом «нейронных клеток», которые могли принимать сигналы от 400 фотоэлементов. Такая нейронная сеть еще была однослойной, несложной, но со временем только совершенствовалась. В 1982 году Джон Хопфилд создал сеть, в которой «нейроны» умели независимо менять свои параметры. В 2007 году Джеффри Хинтон создал алгоритмы глубокого обучения многослойных нейронных сетей[1].
Слово «нейроны» неслучайно: структура компьютерной сети действительно подобна структуре человеческого мозга, в котором множество нейронов соединено множеством связей. Если нервные клетки умирают, страдает мыслительная деятельность человека; если электронных нейронов мало (как в модели Розенблатта), компьютерная модель слаба. Чем больше нейронных слоев задействовано в работе, тем глубже сеть, тем работа эффективнее (отсюда и термин «глубокое обучение»). А чем больше данных получают нейросети, тем быстрее тренируются. Пока больших данных не было, этот механизм существовал лишь в теории.
Перелом случился в XXI веке: мы стали тонуть в информации. В 2016 году человечество за секунду производило в тысячу раз больше контента, чем содержится во всех когда-либо изданных книгах. Для нейросетей наступил рай. Глубокое обучение стало краеугольным камнем ИИ. Facebook использует его, чтобы решить, какие посты показать нам в ленте. Amazon с их помощью рекомендует нам товары. Alexa использует глубокое обучение для расшифровки наших запросов. Благодаря глубокому обучению и нейросетям мир стал удобнее и проще, а нейросети обучают сами себя – что же в этом плохого?
У глубокого обучения три недостатка:
1) оно требует огромного количества данных (AlphaGo потребовалось 30 млн партий в го, чтобы достичь сверхчеловеческой производительности), а с минимальной информацией работает плохо. Чем сильнее реальное положение дел отличается от данных,
1
Принцип работы многослойной нейросети таков: она начинает с загруженных в нее сырых данных и постепенно, слой за слоем, формирует из них все более сложные образы. Так, при распознавании изображений в качестве сырых данных для первого слоя используются пиксели. Нейроны следующего слоя комбинируют их для выявления основных параметров изображения вроде штрихов и ориентации. Следующий слой нейронов комбинирует более длинные линии, углы и пр. Последующие слои выявляют все более сложные формы – овалы, квадраты, пока, наконец, не складываются объекты, которые надо распознать: лицо или рукописный почерк.