Искусственные нейронные сети в настоящее время находят широкое применение в экономике и финансах. Прежде всего они являются альтернативой эконометрических методов оценки, направленных на построение прогнозов, и решают широкий спектр прикладных задач, связанных с предобработкой данных для исследования. Современному экономисту может быть полезно иметь данный инструмент в арсенале методов. Целью предлагаемой работы является популярное объяснение принципа работы данного инструмента, демонстрация некоторых сфер его применения, особенностей разработки и условий, при которых использование рассматриваемого вида машинного обучения может иметь практическую пользу.