В работе рассмотрены практические аспекты моделирования совместного распределения пар национальных биржевых индексов посредством копула-функций. Для получения оценок параметров частных распределений, а также параметра копулы, описывающей структуру зависимости, использован эмпирический байесовский подход, численно реализованный с помощью алгоритма Метрополиса со случайным блужданием. Проводится сопоставление параметрического и полупараметрического подходов к построению копулярных моделей. Обсуждается проблема выбора класса парных копула-функций, наилучшим образом приближающего такие эмпирические характеристики зависимости фондовых индексов, как коэффициент корреляции Кендалла, функцию совместного распределения, поведение хвостов.