Congo Basin Hydrology, Climate, and Biogeochemistry. Группа авторов
Читать онлайн книгу.changes in the understanding of the picture of meteorology over some regions of Africa (e.g., the project African Monsoon Multidisciplinary Analysis [Redelsperger et al., 2006] over West Africa) and underlines unavoidability of this route for central Africa in order to improve in the understanding of the current variability of Earth’s climate and increase trustworthiness in the assessment of its future changes.
REFERENCES
1 Adebiyi, A. A., & Zuidema, P. (2016). The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society, 142(697), 1574–1589. doi: 10.1002/qj.2765
2 Aloysius, N. R., Sheffield, J., Saiers, J. E., Li, H., & Wood, E. F. (2016). Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research: Atmospheres, 121(1), 130–152. doi: 10.1002/2015jd023656
3 Berhane, F., Zaitchik, B., & Badr, H. S. (2015). The Madden–Julian Oscillation’s Influence on Spring Rainy Season Precipitation over Equatorial West Africa*. Journal of Climate, 28(22), 8653–8672. doi: 10.1175/jcli‐d‐14‐00510.1
4 Bombardi, R. J., Kinter, J. L. and Frauenfeld, O. W. (2019). A global gridded dataset of the characteristics of the rainy and dry seasons. Bulletin of the American Meteorological Society, 100(7), 1315–1328. https://doi.org/10.1175/BAMS‐D‐18‐0177.1
5 Brummett, R., Tanania, C., Pandi A., Ladel J., Munzini Y., Russell A., et al. (2009). Ressources en eau et biens et services liés à l’écosystème forestier. In: Wasseige, C., Devers, D., de Marcen, P., Eba’a Atyi, R., Nasi, R., & Mayaux, P. (Eds.) Les forêts du Bassin du Congo. Office des publications de l'Union européenne, Luxembourg. doi: 10.2788/32456
6 Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2015). TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates*. Journal of Climate, 28(16), 6536–6547. doi: 10.1175/jcli‐d‐15‐0124.1
7 Clulow, A. D., Strydom, S., Grant, B., Savage, M. J., & Everson, C. S. (2018). Integration of a Ground Based Lightning Warning System into a Mining Operation in the Democratic Republic of the Congo. Weather, Climate, and Society, 10(4), 899–912. doi: 10.1175/wcas‐d‐18‐0004.1
8 Collier, A. B., & Hughes, A. R. (2011). Lightning and the African ITCZ. Journal of Atmospheric and Solar‐Terrestrial Physics, 73(16), 2392–2398. doi: 10.1016/j.jastp.2011.08.010
9 Cook, K. H., & Vizy, E. K. (2015). The Congo Basin Walker circulation: Dynamics and connections to precipitation. Climate Dynamics, 47(3–4), 697–717. doi: 10.1007/s00382‐015‐2864‐y
10 Cook, K. H., & Vizy, E. K. (2019). Contemporary Climate Change of the African Monsoon Systems. Current Climate Change Reports, 5(3), 145–159. doi: 10.1007/s40641‐019‐00130‐1
11 Cook, K. H. (2015). Role of inertial instability in the West African monsoon jump. Journal of Geophysical Research: Atmospheres, 120(8), 3085–3102. doi: 10.1002/2014jd022579
12 Creese, A., Washington, R., & Munday, C. (2019). The Plausibility of September–November Congo Basin Rainfall Change in Coupled Climate Models. Journal of Geophysical Research: Atmospheres, 124(11), 5822–5846. doi: 10.1029/2018jd029847
13 Creese, A., & Washington, R. (2016). Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble. Journal of Geophysical Research: Atmospheres, 121(22). doi: 10.1002/2016jd025596
14 Creese, A., & Washington, R. (2018). A Process‐Based Assessment of CMIP5 Rainfall in the Congo Basin: The September–November Rainy Season. Journal of Climate, 31(18), 7417–7439. doi: 10.1175/jcli‐d‐17‐0818.1
15 Dezfuli, A. K., & Nicholson, S. E. (2013). The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The boreal autumn. Journal of Climate, 26(1), 66–84. doi: 10.1175/jcli‐d‐11‐00686.1
16 Dezfuli, A. K., Zaitchik, B. F., and Gnanadesikan, A. (2015). Regional atmospheric circulation and rainfall variability in south equatorial Africa. Journal of Climate, 28, 809–818. https://doi.org/10.1175/JCLI‐D‐14‐00333.1
17 Dosio, A., Jones, R. G., Jack, C., Lennard, C., Nikulin, G., & Hewitson, B. (2019). What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dynamics, 53(9–10), 5833–5858. doi: 10.1007/s00382‐019‐04900‐3
18 Dyer, E. L., Jones, D. B., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122(13), 6882–6898. doi: 10.1002/2016jd026240
19 Eba’a Atyi, R., Martius, C., Schmidt, L., Hirsch, F., Tadoum, M., Bayol, N., et al. (2015): The forests of Central Africa: an increased contribution to the mitigation of climate change. In: de Wasseige, C., Eba’a Atyi, R., & Doumenge, C. (Eds.), Les forêts du Bassin du Congo‐Etat de Forêts 2015. Weyrich. Belgique. 128 pp.
20 Fotso‐Kamga, G., Fotso‐Nguemo, T. C., Diallo, I., Yepdo, Z. D., Pokam, W. M., Vondou, D. A., & Lenouo, A. (2020). An evaluation of COSMO‐CLM regional climate model in simulating precipitation over Central Africa. International Journal of Climatology, 40(5), 2891–2912. doi: 10.1002/joc.6372
21 Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1). doi: 10.1038/sdata.2015.66
22 Guo, X., Lu, C., Zhao, T., Zhang, G., & Liu, Y. (2015). An observational study of entrainment rate in deep convection. Atmosphere, 6(9), 1362–1376. doi: 10.3390/atmos6091362
23 Haensler, A., Saeed, F., & Jacob, D. (2013). Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Climatic Change, 121(2), 349–363. doi: 10.1007/s10584‐013‐0863‐8
24 Hagos, S., & Zhang, C. (2010). Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Quarterly Journal of the Royal Meteorological Society, 136(S1), 411–425. doi: 10.1002/qj.538
25 Hart, N. C., Washington, R., & Maidment, R. I. (2019). Deep convection over Africa: Annual cycle, ENSO, and trends in the hotspots. Journal of Climate, 32(24), 8791–8811. doi: 10.1175/jcli‐d‐19‐0274.1
26 Hartman, A. T. (2020). Tracking mesoscale convective systems in central equatorial Africa. International Journal of Climatology, 41(1), 469–482. doi: 10.1002/joc.6632
27 Holloway, C. E., & Neelin, J. D. (2009). Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences, 66(6), 1665–1683. doi: 10.1175/2008jas2806.1
28 Howard, E., & Washington, R. (2018). Characterizing the synoptic expression of the Angola Low. Journal of Climate, 31(17), 7147–7165. doi: 10.1175/jcli‐d‐18‐0017.1
29 Howard, E., & Washington, R. (2019). Drylines in southern Africa: Rediscovering the Congo Air Boundary. Journal of Climate, 32(23), 8223–8242. doi: 10.1175/jcli‐d‐19‐0437.1
30 Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., & Jiang, Y. (2016). Possible causes of the central equatorial African long‐term drought. Environmental Research Letters, 11(12), 124002. doi: 10.1088/1748‐9326/11/12/124002
31 Jackson, B., Nicholson, S. E., & Klotter, D. (2009). Mesoscale convective systems over western equatorial Africa and their relationship to large‐scale circulation. Monthly Weather Review, 137(4), 1272–1294. doi: 10.1175/2008mwr2525.1
32 Kamsu‐Tamo, P. H., Janicot, S., Monkam, D., & Lenouo, A. (2014). Convection activity over