Nonlinear Filters. Simon Haykin

Читать онлайн книгу.

Nonlinear Filters - Simon  Haykin


Скачать книгу

      In order to design the observer in (3.41), the matrices bold upper E and bold upper F are chosen regarding the state estimation error:

      (3.43)StartLayout 1st Row 1st Column bold e Subscript k plus 1 2nd Column equals bold x Subscript k plus 1 Baseline minus ModifyingAbove bold x With Ì‚ Subscript k plus 1 Baseline 2nd Row 1st Column Blank 2nd Column equals bold upper A bold x Subscript k Baseline plus bold upper B bold u Subscript k Baseline minus bold upper E ModifyingAbove bold x With Ì‚ Subscript k Baseline minus bold upper F bold y Subscript k colon k plus script l Baseline 3rd Row 1st Column Blank 2nd Column equals left-parenthesis bold upper A minus bold upper E right-parenthesis bold x Subscript k Baseline plus bold upper B bold u Subscript k Baseline plus bold upper E bold e Subscript k Baseline minus bold upper F bold y Subscript k colon k plus script l Baseline period EndLayout

      (3.44)bold e Subscript k plus 1 Baseline equals bold upper E bold e Subscript k Baseline plus left-parenthesis bold upper A minus bold upper E minus bold upper F script upper O Subscript script l Baseline right-parenthesis bold x Subscript k Baseline plus bold upper B bold u Subscript k Baseline minus bold upper F script upper J Subscript script l Baseline bold u Subscript k colon k plus script l Baseline period

      Theorem 3.1 There exists a matrix that satisfies (3.45), if and only if

      In order to satisfy condition (3.45), matrix bold upper F must be in the left nullspace of the last script l times n Subscript u columns of script upper J Subscript script l given by StartBinomialOrMatrix bold 0 Choose script upper J Subscript script l minus 1 EndBinomialOrMatrix. Let bold upper N overbar be a matrix whose rows form a basis for the left nullspace of script upper J Subscript script l minus 1:

      (3.48)bold upper N overbar script upper J Subscript script l minus 1 Baseline equals bold 0 comma

      then we have:

      (3.49)Start 2 By 2 Matrix 1st Row 1st Column bold upper I Subscript n Sub Subscript y Subscript Baseline 2nd Column bold 0 2nd Row 1st Column bold 0 2nd Column bold upper N overbar EndMatrix StartBinomialOrMatrix bold 0 Choose script upper J Subscript script l minus 1 Baseline EndBinomialOrMatrix equals bold 0 period

      Let us define:

      (3.50)bold upper N equals bold upper W Start 2 By 2 Matrix 1st Row 1st Column bold upper I <hr><noindex><a href=Скачать книгу