Sustainable Solutions for Environmental Pollution, Volume 2. Группа авторов
Читать онлайн книгу.10.1007/s00253-013-5328-5.
Arslan, M., Imran, A., Khan, Q.M., Afzal, M., Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res., 24, 5, 4322–4336, 2017, doi: 10.1007/s11356-015-4935-3.
Arthaud, F., Vallod, D., Robin, J., Bornette, G., Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquat. Sci., 74, 3, 471–481, 2012, doi: 10.1007/s00027-011-0241-4.
Arthaud, F., Vallod, D., Robin, J., Wezel, A., Bornette, G., Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J. Veg. Sci., 24, 1, 148–156, 2013, doi: 10.1111/j.1654-1103.2012.01436.x.
Asaeda, T., Karunaratne, S., Dynamic modeling of the growth of Phragmites australis: model description. Aquat. Bot., 67, 4, 301–318, 2000, doi: 10.1016/ S0304-3770(00)00095-4.
Asaeda, T., Nam, L.H., Hietz, P., Tanaka, N., Karunaratne, S., Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aqu. Bot., 73, 3, 223–239, 2002, doi: 10.1016/S0304-3770(02)00027-X.
Aucour, A.M., Bariac, T., Breil, P., Namour, P., Schmitt, L., Gnouma, R., Zuddas, P., Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing. Water Sci. Technol., 68, 12, 2632–2637, 2013, doi: 10.2166/wst.2013.531.
Auderset Joye, D. and Boissezon, A., New insights into the ecology and phenology of two Characeae: N. opaca (Bruzelius) C. Agardh and N. gracilis (Sm.) C. Agardh. Bot. Lett., 165, 1, 91–102, 2017, doi: 10.1080/23818107.2017.1365259.
Aulenta, F., Canosa, A., Reale, P., Rossetti, S., Panero, S., Majone, M., Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol. Bioeng., 103, 1, 85–91, 2009, doi: 10.1002/bit.22234.
Aulenta, F., Tocca, L., Verdini, R., Reale, P., Majone, M., Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ. Sci. Technol., 45, 19, 8444–8451, 2011, doi: 10.1021/es202262y.
Avetta, P., Fabbri, D., Minella, M., Brigante, M., Maurino, V., Minero, C., Pazzi, M., Vione, D., Assessing the phototransformation of diclofenac, clofibric acid and naproxen in surface waters: Model predictions and comparison with field data. Water Res., 105, 383–394, 2016, doi: 10.1016/j.watres.2016.08.058.
Axtell, N.R., Sternberg, S.P.K., Claussen, K., Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol., 89, 1, 41–48, 2003, doi: 10.1016/s0960-8524(03)00034-8.
Badiou, P., Page, B., Ross, L., A comparison of water quality and greenhouse gas emissions in constructed wetlands and conventional retention basins with and without submerged macrophyte management for storm water regulation. Ecol. Engin., 127, 292–301, 2019, doi: 10.1016/j.ecoleng.2018.11.028.
Baena-Nogueras, R.M., González-Mazo, E., Lara-Martín, P.A., Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Sci. Total Environ., 590–591, 643–654, 2017, doi: 10.1016/j.scitotenv.2017.03.015.
Bagchi, S. and Behera, M., Assessment of heavy metal removal in different bio-electrochemical systems: a review. J. Hazard. Toxic Radioact. Waste, 24, 3, 19, 2020, doi: 10.1061/(asce)hz.2153-5515.0000500.
Bains, W., Petkowski, J.J., Sousa-Silva, C., Seager, S., New environmental model for thermodynamic ecology of biological phosphine production. Sci. Total Environ., 658, 521–536, 2019, doi: 10.1016/j.scitotenv.2018.12.086.
Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli, G., De Santo, A.V., Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut., 130, 2, 149–156, 2004, doi: 10.1016/j.envpol.2003.12.015.
Barba, S., López-Vizcaíno, R., Saez, C., Villaseñor, J., Cañizares, P., Navarro, V., Rodrigo, M.A., Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. Chem. Engi. J., 2030–2038, 334, 2018, doi: 10.1016/j.cej.2017.11.172.
Bardgett, R.D. and van der Putten, W.H., Belowground biodiversity and ecosystem functioning. Nature, 515, 7528, 505–511, 2014, doi: 10.1038/nature13855.
Barthélémy, C. and Armani, G., A comparison of social processes at three sites of the French Rhône River subjected to ecological restoration. Freshw. Biol., 60, 6, 1208–1220, 2015, doi: 10.1111/fwb.12531.
Basilico, L., Prost-Boucle, S., Vasseur, L., Villemagne, E., Les zones de rejets végétalisées: repères scientfiques et recommandations pour la mise en oeuvre, Collection: Comprendre pour agir, p. 20, Agence Française pour la Biodivesité, Paris, France, 2017.
Beaulieu, J.J., Arango, C.P., Hamilton, S.K., Tank, J.L., The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Glob. Change Biol., 14, 4, 878–894, 2008, doi: 10.1111/j.1365-2486.2007.01485.x.
Beaulieu, J.J., Shuster, W.D., Rebholz, J.A., Nitrous oxide emissions from a large, impounded river: the Ohio River. Environ. Sci. Technol., 44, 19, 7527–7533, 2010, doi: 10.1021/es1016735.
Becerra-Jurado, G., Harrington, R., Kelly-Quinn, M., A review of the potential of surface flow constructed wetlands to enhance macroinvertebrate diversity in agricultural landscapes with particular reference to Integrated Constructed Wetlands (ICWs). Hydrobiologia, 692, 1, 121–130, 2012, doi: 10.1007/ s10750-011-0866-2.
Becouze-Lareure, C., Dembélé, A., Coquery, M., Cren-Olivé, C., Bertrand-Krajewski, J.L., Assessment of 34 dissolved and particulate organic and metallic micropollutants discharged at the outlet of two contrasted urban catchments. Sci. Total Environ., 651, 1810–1818, 2019, doi: 10.1016/j. scitotenv.2018.10.042.
Bennicelli, R., Stępniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J., The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 1, 141–146, 2004, doi: 10.1016/j. chemosphere.2003.11.015.
Benson, J., Hanlon, R., Seifried, T.M., Baloh, P., Powers, C., Grothe, H., Schmale, D., Microorganisms collected from the surface of freshwater lakes using a drone water sampling system (DOWSE). Water, 11, 157, 2019, doi: 10.3390/ w11010157.
Benvenuti, T., Hamerski, F., Giacobbo, A., Bernardes, A.M., Zoppas-Ferreira, J., & Rodrigues, M.A., Constructed floating wetland for the treatment of domestic sewage: A real-scale study. J. Environ. Chem. Eng., 6, 5, 5706–5711, 2018. doi: 10.1016/j.jece.2018.08.067.
Bertrand, J., Bonin, P., Caumette, P., Gattuso, J., Gregori, G., Guyonneaud, R., Le Roux, X., Matheron, R., Poly, F., Cycles biogéochimiques, in: Ecologie microbienne: microbiologie des milieux naturels et anthropisés, Bertrand, J.C., Caumette, P. , Lebaron, P. , Matheron, R. , Normand, P. (Ed.) (Eds.), p. 1002, Presses universitaires de Pau et des Pays de l’Adour, Pau (France, 2011).
Best, E.P.H. and Visser, H.W.C., Seasonal growth of the submerged macrophyte Ceratophyllum demersum L. in mesotrophic Lake Vechten in relation to insolation, temperature and reserve carbohydrates. Hyrobiol., 148, 3, 231–243, 1987, doi: 10.1007/BF00017526.
Best, E.P.H., A preliminary model for growth of Ceratophyllum demersum L. SIL Proceedings, 1922–2010, vol. 21, pp. 1484–1491, 1981, doi: 10.1080/03680770.1980.11897218.
Bhaskaran, K., Vijaya Nadaraja, A., Tumbath, S., Babu Shah, L., Gangadharan Puthiya Veetil, P., Phytoremediation of perchlorate by free floating macrophytes. J. Hazard. Mater., 260, 901–906,