Sustainable Solutions for Environmental Pollution, Volume 2. Группа авторов
Читать онлайн книгу.drainage ditches. J. Appl. Ecol., 50, 3, 585–593, 2013, doi: 10.1111/1365-2664.12066.
Peyrard, D., Delmotte, S., Sauvage, S., Namour, P., Gerino, M., Vervier, P., Sanchez-Perez, J.M., Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study. Phys. Chem. Earth, 36, 12, 599–611, 2011, doi: 10.1016/j.pce.2011.05.003.
Pi, N., Ng, J.Z., Kelly, B.C., Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and. Eichhornia crassipes. Sci. Total Environ., 601, 812–820, 2017, doi: 10.1016/j. scitotenv.2017.05.137.
Polechonska, L., Klink, A., Dambiec, M., Trace element accumulation in Salvinia natans from areas of various land use types. Environ. Sci. Pollut. Res., 26, 29, 30242–30251, 2019, doi: 10.1007/s11356-019-06189-5.
Polechonska, L., Klink, A., Dambiec, M., Rudecki, A., Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecol. Indic., 93, 274–281, 2018, doi: 10.1016/j.ecolind.2018.05.020.
pole-zhi.org, La zone libellule : utiliser les zones humides pour, réduire les nouveaux polluants Association française des Etablissements Publics Territoriaux de Bassin (AFEPTB, Paris (France, 2013, http://www.pole-zhi.org/la-zonelibellule-utiliser-les-zones-humides-pour-reduire-les-nouveaux-polluants.
Prajapati, M., van Bruggen, J.J.A., Dalu, T., Malla, R., Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for waste-water treatment. Appl. Water Sci., 7, 8, 4801–4809, 2017, doi: 10.1007/ s13201-017-0625-2.
Prasad, M., Aquatic Plants for Phytotechnology, in: Environmental Bioremediation Technologies, Singh, S.N. , Tripathi, R.D. (Eds.), Springer, Berlin, Heidelberg, 2007, doi: 10.1007/978-3-540-34793-4_11.
Prasetya, A., Prihutami, P., Warisaura, A.D., Fahrurrozi, M., Petrus, H., Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. J. Environ. Chem. Eng., 8, 3, 8, 2020, doi: 10.1016/j.jece.2020.103781.
Qu, X., Vavilin, V.A., Mazeas, L., Lemunier, M., Duquennoi, C., He, P.J., Bouchez, T., Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and nonaceticlastic methanogenesis. Waste Manage., 29, 6, 1828–1837, 2009, doi: 10.1016/j.wasman.2008.12.008.
Quejigo, J.R., Domínguez-Garay, A., Dörfler, U., Schroll, R., Esteve-Núñez, A., Anodic shifting of the microbial community profile to enhance oxidative metabolism in soil. Soil Biol. Biochem., 116, 131–138, 2018, doi: 10.1016/j. soilbio.2017.09.012.
Raskin, I., Kumar, P.B.A.N., Dushenkov, S., Salt, D.E., Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol., 5, 3, 285–290, 1994, doi: 10.1016/0958-1669(94)90030-2.
Raven, J.A., Aquatic viruses: the emerging story. J. Mar. Biolog. Assoc. U.K., 86, 449–451, 2006, doi: 10.1017/S0025315406013348.
Ray, C., Grischek, T., Schubert, J., Wang, J.Z., Speth, T.F., A Perspective of Riverbank Filtration. J. AWWA, 94, 4, 149–160, 2002, doi: 10.1002/j.1551-8833.2002. tb09459.x.
Reddy, K.R., Cameselle, C., Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, John Wiley & Sons, Hoboken, New Jersey, 2009.
Reddy, K.R., Tucker, J.C., Productivity and nutrient uptake of water hyacinth,Eichhornia crassipes I. Effect of nitrogen source. Econ. Bot., 37, 2, 237–247, 1983, doi: 10.1007/BF02858790.
Reed, S.C., Clearinghouse, N.S.F., Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment, U.S. Environmental Protection Agency, Office of Water, 1993.
Rehman, K., Ijaz, A., Arslan, M., Afzal, M., Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int. J. Phytoremediation, 21, 13, 1273–1289, 2019, doi: 10.1080/15226514.2019.1633253.
Ren, Z.Y., Yan, H.J., Wang, W., Mench, M.M., Regan, J.M., Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales. Environ. Sci. Technol., 45, 6, 2435–2441, 2011, doi: 10.1021/es103115a.
Rizzo, A., Tondera, K., Pálfy, T.G., Dittmer, U., Meyer, D., Schreiber, C., Zacharias, N., Ruppelt, J.P., Esser, D., Molle, P., Troesch, S., Masi, F., Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. Sci. Total Environ., 727, 138618, 2020, doi: 10.1016/j.scitotenv.2020.138618.
Rodrigo, M.A., Oturan, N., Oturan, M.A., Electrochemically Assisted Remediation of Pesticides in Soils and Water: A Review. Chem. Rev., 114, 17, 8720–8745, 2014, doi: 10.1021/cr500077e.
Roels, J., Verstraete, W., Biological formation of volatile phosphorus compounds. Bioresour. Technol., 79, 3, 243–250, 2001, doi: 10.1016/ S0960-8524(01)00032-3.
Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J., Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour. Technol., 126, 247–253, 2012, doi: 10.1016/j. biortech.2012.09.022.
Rulkens, W.H., Tichy, R., Grotenhuis, J.T.C., Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol., 37, 8, 27–35, 1998, doi: 10.1016/S0273-1223(98)00232-7.
Ryckelynck, N., Stecher, H.A., & Reimers, C.E., Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry, 76, 1, 113–139, 2005, doi: 10.1007/ s10533-005-2671-3.
Saberioon, M., Brom, J., Nedbal, V., Souc̆ek, P., Císar̆, P., Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland water. Ecol. Indic., 113, 106236, 2020, doi: 10.1016/j. ecolind.2020.106236.
Saleh, H.M., Moussa, H.R., Mahmoud, H.H., El-Saied, F.A., Dawoud, M., Wahed, R.S.A., Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog. Nucl. Energy, 118, 11, 2020, doi: 10.1016/j. pnucene.2019.103147.
Salt, D.E., Smith, R.D., Raskin, I., Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 1, 643–668, 1998, doi: 10.1146/annurev.arplant.49.1.643.
Sanchez, O., Constructed Wetlands Revisited: Microbial Diversity in the -omics Era. Microb. Ecol., 73, 3, 722–733, 2017, doi: 10.1007/s00248-016-0881-y.
Sangely, M., Dégradation biologique des polychlorobiphényles, p. 246, Institut National Polytechnique de Toulouse. PhD thesis, Université de Toulouse, Toulouse, 2010.
Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources, 356, 225–244, 2017, doi: 10.1016/j.jpowsour.2017.03.109.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V. et al., The global methane budget 2000-2012. Earth Syst. Sci. Data, 8, 2, 697– 751, 2016, doi: 10.5194/essd-8-697-2016.
Schievano, A., Colombo, A., Grattieri, M., Trasatti, S.P., Liberale, A., Tremolada, P., Pino, C., Cristiani, P., Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources, 340, 80–88, 2017, doi: 10.1016/j.jpowsour.2016.11.037.
Schmitt,