Properties for Design of Composite Structures. Neil McCartney

Читать онлайн книгу.

Properties for Design of Composite Structures - Neil McCartney


Скачать книгу
3 upper C r squared minus StartFraction 3 upper D Over r Superscript 4 Baseline EndFraction right-parenthesis cosine 2 theta comma 2nd Row epsilon Subscript theta theta Baseline identical-to StartFraction 1 Over r EndFraction StartFraction partial-differential u Subscript theta Baseline Over partial-differential theta EndFraction plus StartFraction u Subscript r Baseline Over r EndFraction equals left-parenthesis upper A minus StartFraction k Subscript upper T Baseline minus mu Subscript t Baseline Over k Subscript upper T Baseline plus mu Subscript t Baseline EndFraction StartFraction upper B Over r squared EndFraction plus StartFraction k Subscript upper T Baseline plus mu Subscript t Baseline Over k Subscript upper T Baseline minus mu Subscript t Baseline EndFraction 3 upper C r squared minus StartFraction 3 upper D Over r Superscript 4 Baseline EndFraction right-parenthesis cosine 2 theta comma 3rd Row epsilon Subscript r theta Baseline identical-to one-half left-parenthesis StartFraction 1 Over r EndFraction StartFraction partial-differential u Subscript r Baseline Over partial-differential theta EndFraction plus StartFraction partial-differential u Subscript theta Baseline Over partial-differential r EndFraction minus StartFraction u Subscript theta Baseline Over r EndFraction right-parenthesis equals left-parenthesis upper A plus StartFraction k Subscript upper T Baseline Over k Subscript upper T Baseline plus mu Subscript t Baseline EndFraction StartFraction upper B Over r squared EndFraction plus StartFraction 3 k Subscript upper T Baseline Over k Subscript upper T Baseline minus mu Subscript t Baseline EndFraction upper C r squared plus StartFraction 3 upper D Over r Superscript 4 Baseline EndFraction right-parenthesis sine 2 theta comma 4th Row epsilon Subscript z z Baseline identical-to StartFraction partial-differential u Subscript z Baseline Over partial-differential z EndFraction equals 0 comma epsilon Subscript r z Baseline identical-to one-half left-parenthesis StartFraction partial-differential u Subscript r Baseline Over partial-differential z EndFraction plus StartFraction partial-differential u Subscript z Baseline Over partial-differential r EndFraction right-parenthesis equals 0 comma epsilon Subscript theta z Baseline identical-to one-half left-parenthesis StartFraction partial-differential u Subscript theta Baseline Over partial-differential z EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential u Subscript z Baseline Over partial-differential theta EndFraction right-parenthesis equals 0 period EndLayout"/>(4.94)

      When ΔT=0, the stress-strain relations (4.14)–(4.17) are written as

      where ET=2μt(1+νt). It follows directly from (4.94) and (4.98) that

      From (4.94) and (4.97) it is clear that

      and on summing (4.95) and (4.96)

      epsilon Subscript r r Baseline plus epsilon Subscript theta theta Baseline equals StartFraction 1 minus nu Subscript t Baseline Over upper E Subscript upper T Baseline EndFraction left-parenthesis sigma Subscript r r Baseline plus sigma Subscript theta theta Baseline right-parenthesis minus StartFraction 2 nu Subscript upper A Baseline Over upper E Subscript upper A Baseline EndFraction sigma Subscript z z Baseline period(4.101)

      On substituting for σzz using (4.100), it then follows that

      On subtracting (4.95) and (4.96),

      It follows from (4.94), on addition and subtraction, that