От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях. Аджей Агравал
Читать онлайн книгу.относится к компетенции фермеров. Однако, по мнению Фридберга, «со временем участие аграриев сведется к нулю. Все будет под контролем. Появятся прогнозы на любой случай». Фермеры понемногу привыкают к этой мысли. Майкл Льюис пишет: «[Никто] никогда не задавал Фридбергу вопрос: если в моих знаниях больше нет необходимости, то кому нужен я?» Иначе говоря, дело идет к подрыву старой системы и централизованному управлению фермерскими хозяйствами. Мы не знаем, сколько времени займет процесс изменений и все ли решения удастся автоматизировать. Но можно точно сказать, что у этих инструментов большой потенциал: в 2013 году компания Monsanto приобрела Climate Corporation за 1,1 млрд долларов.
Шаг за шагом, по мере совершенствования технологий прогнозирования, фермеры не просто изучают прогнозы и принимают решения, а передают эти полномочия другим. Вероятно, таким образом эффективность управления фермой повышается, поскольку ответственность берут на себя люди, обладающие необходимой информацией, навыками, стимулами и умеющие координировать процессы. Но в то же время какова будет роль фермеров? Сейчас они землевладельцы, но надолго ли?
Наша цель – мотивировать разработку системных решений на основе ИИ. В центре внимания – принятие управленческих решений и роль прогнозирования в этой процедуре. В части I мы обсудили притчу о трех предпринимателях и охарактеризовали проблемы разработки и внедрения ИИ в период межвременья, которые, скорее всего, имели место и в прошлом, во времена внедрения электричества и других технологий общего назначения. Чтобы перекинуть мостик к пониманию этих проблем и возможностей, в главе 3 мы напомним основные положения нашей предыдущей книги – «Искусственный интеллект на службе бизнеса». Также мы разберемся, почему прогнозирование – одна из ключевых функций ИИ. В части II подробнее рассмотрим процесс принятия решений и докажем, что одних точечных решений недостаточно, чтобы получить высокую отдачу от прогнозирования. Мы рассмотрим три основных положения. Во-первых, процесс принятия решений сложен, связан с когнитивными издержками и не сводится к простому следованию правилам. Он позволяет скорректировать действия в ответ на новую информацию. Без прогнозирования эти преимущества отчасти утрачивают свою ценность. Во-вторых, прогнозы ИИ могут изменить баланс между правилами и решениями, а за правилами и действиями, призванными защитить компанию от негативных последствий, таится неопределенность. Из-за нее трудно найти применение искусственному интеллекту. В то же время именно с неопределенностью могут быть связаны наиболее сильные потрясения. Если она проявится, то компании, которые стараются ее скрыть, окажутся в опасности. В-третьих, мы обсудим, как решения связаны между собой. Когда они взаимодействуют, переход от правил к решениям, основанным на прогнозировании, фактически добавляет