Пятое измерение. Исследование природы времени. Галина Юрковец

Читать онлайн книгу.

Пятое измерение. Исследование природы времени - Галина Юрковец


Скачать книгу
обладает волновыми свойствами, тогда что возмущает среду, в которой существует эта волна? Что колеблется? А если электрон – частица, то как он может в одно и то же время находиться в двух местах?

      Ответ дал Макс Борн в 1926 году, заявив, что колеблется вероятность нахождения электрона в данной точке. Невозможно точно и наверняка определить, где находится электрон. Единственное, что мы можем знать, – это вероятность его нахождения. Идею закрепил Вернер Гейзенберг, сформулировав свой знаменитый принцип неопределенности, легший в основу квантовой теории. Принцип гласит, что одновременно знать точно импульс (произведение массы на скорость) и местоположение электрона невозможно. Математически он выражается соотношением неопределенности по формуле, где погрешность измерения координаты, умноженная на погрешность измерения импульса, всегда должна быть больше или равна постоянной Планка. Это накладывает ограничение: если мы точно определяем месторасположение частицы, то не можем точно знать ее скорость. И наоборот: определив скорость, мы получаем неопределенность с координатами.

      Принцип неопределенности аналогичным образом связывает не только координаты и скорость, но и другие пары взаимно увязанных характеристик частиц. Так, невозможно безошибочно измерить энергию квантовой системы и определить момент времени, в который она этой энергией обладает. Неопределенность является следствием корпускулярно-волнового дуализма. Элементарная частица – это частица, но вероятность ее нахождения в любой заданной точке задается волновой функцией. Пока мы измеряем одну величину, другая в это время успевает как бы умчаться от нас вдаль, стать размытой, неопределенной, выдавая большие погрешности в расчетах.

      В 1927 году Нильс Бор и Вернер Гейзенберг сформулировали Копенгагенскую интерпретацию, согласно которой квантовая механика описывает не микрообъекты сами по себе, а их свойства, проявляющиеся на макроуровне. Макроуровень, или окружающий реальный мир, создается классическими измерительными приборами в процессе акта наблюдения. Именно акт измерения вызывает мгновенное схлопывание, «коллапс волновой функции».

      Копенгагенскую интерпретацию сами физики часто сравнивают с философией епископа Беркли [1], который задавал вопрос: если в лесу падает дерево и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Копенгагенская интерпретация квантовой теории не отвечает на этот вопрос однозначным «да» или однозначным «нет». Ее ответ куда более неприятен, чем сам вопрос: если рядом с деревом никого нет, то это дерево существует как сумма множества различных состояний. Оно может не только расти или падать, но и существовать, например, в виде только что проклюнувшегося ростка, в виде обугленного под ударом молнии столба, в виде поленницы дров или листа фанеры и т.д. Только когда вы смотрите на дерево, его волновая функция чудесным образом схлопывается, превращаясь в конкретный объект.

      Твердыни, которые еще совсем недавно казались


Скачать книгу