.

Читать онлайн книгу.

 -


Скачать книгу
About the Publisher

       Prologue

      1

      In my first chemistry class, at the age of fourteen, I successfully precipitated a single crystal of mineral salts. This elementary experiment was done by heating a solution of copper sulphate (I think) over a Bunsen burner, and leaving it to cool overnight. The next morning there it lay at the bottom of my carefully labelled test tube: a single beautiful crystal, the size of a flattened Fox’s Glacier Mint, a miniature ziggurat with a faint blue opalescence, propped up against the inside of the glass (too big to lie flat), monumental and mysterious to my eyes. No one else’s test tube held anything but a few feeble grains. I was triumphant, my scientific future assured.

      But it turned out that the chemistry master did not believe me. The crystal was too big to be true. He said (not at all unkindly) that I had obviously faked it, and slipped a piece of coloured glass into the test tube instead. It was quite a good joke. I implored him, ‘Oh, test it, sir; just test it!’ But he refused, and moved on to other matters. In that moment of helpless disappointment I think I first glimpsed exactly what real science should be. To add to it, years later I learned the motto of the Royal Society: Nullius in Verba-‘Nothing upon Another’s Word’. I have never forgotten this incident, and have often related it to scientific friends. They nod sympathetically, though they tend to add that I did not (as a matter of chemical fact) precipitate a crystal at all-what I did was to seed one, a rather different process. No doubt this is so. But the eventual consequence, after many years of cooling, has certainly been to precipitate this book.

      2

      The Age of Wonder is a relay race of scientific stories, and they link together to explore a larger historical narrative. This is my account of the second scientific revolution, which swept through Britain at the end of the eighteenth century, and produced a new vision which has rightly been called Romantic science.1

      Romanticism as a cultural force is generally regarded as intensely hostile to science, its ideal of subjectivity eternally opposed to that of scientific objectivity. But I do not believe this was always the case, or that the terms are so mutually exclusive. The notion of wonder seems to be something that once united them, and can still do so. In effect there is Romantic science in the same sense that there is Romantic poetry, and often for the same enduring reasons.

      It was also a movement of transition. It flourished for a relatively brief time, perhaps two generations, but produced long-lasting consequences-raising hopes and questions-that are still with us today. Romantic science can be dated roughly, and certainly symbolically, between two celebrated voyages of exploration. These were Captain James Cook’s first round-the-world expedition aboard the Endeavour, begun in 1768, and Charles Darwin’s voyage to the Galapagos islands aboard the Beagle, begun in 1831. This is the time I have called the Age of Wonder, and with any luck we have not yet quite outgrown it.

      The idea of the exploratory voyage, often lonely and perilous, is in one form or another a central and defining metaphor of Romantic science. That is how William Wordsworth brilliantly transformed the great Enlightenment image of Sir Isaac Newton into a Romantic one. While a university student in the 1780s Wordsworth had often contemplated the full-size marble statue of Newton, with his severely close-cropped hair, that still dominates the stone-flagged entrance hall to the chapel of Trinity College, Cambridge. As Wordsworth originally put it, he could see, a few yards from his bedroom window, over the brick wall of St John’s College,

      The Antechapel, where the Statue stood

      Of Newton, with his Prism and silent Face.

      Sometime after 1805, Wordsworth animated this static figure, so monumentally fixed in his assured religious setting. Newton became a haunted and restless Romantic traveller amidst the stars:

      And from my pillow, looking forth by light

      Of moon or favouring stars, I could behold The Antechapel where the Statue stood Of Newton, with his prism and his silent face, The marble index of a Mind for ever Voyaging through strange seas of Thought, alone.3

      The notion of an infinite, mysterious Nature, waiting to be discovered or seduced into revealing all her secrets, was widely held. Scientific instruments played an increasingly important role in this process of revelation, allowing man not merely to extend his senses passively-using the telescope, the microscope, the barometer-but to intervene actively, using the voltaic battery, the electrical generator, the scalpel or the air pump. Even the Montgolfier balloon could be seen as an instrument of discovery, or indeed of seduction.

      There was, too, a subtle reaction against the idea of a purely mechanistic universe, the mathematical world of Newtonian physics, the hard material world of objects and impacts. These doubts, expressed especially in Germany, favoured a softer ‘dynamic’ science of invisible powers and mysterious energies, of fluidity and transformations, of growth and organic change. This is one of the reasons that the study of electricity (and chemistry in general) became the signature science of the period; though astronomy itself, once the exemplary science of the Enlightenment, would also be changed by Romantic cosmology.

      The ideal of a pure, ‘disinterested’ science, independent of political ideology and even religious doctrine, also began slowly to emerge. The emphasis on a secular, humanist (even atheist) body of knowledge, dedicated to the ‘benefit of all mankind’, was particularly strong in Revolutionary France. This would soon involve Romantic science in new


Скачать книгу