Bounce: The Myth of Talent and the Power of Practice. Matthew Syed
Читать онлайн книгу.in history, and you still would not have made contact with the ball.’
I ask Mark to replay the tape and adjust my focus to look at the places rich in information, but it makes me even more sluggish. Mark laughs. ‘It is not as simple as just knowing about where to look; it is also about grasping the meaning of what you are looking at. It is about looking at the subtle patterns of movement and postural clues and extracting information. Top tennis players make a small number of visual fixations and “chunk” the key information.’
Think back to the master chess players. You’ll remember that when they looked at a board, they saw words: that is to say, they were able to chunk the position of the pieces as a consequence of their long experience of trying to find the best moves in chess games. Now we can see that the very same thing is happening in tennis.
When Roger Federer returns a service, he is not demonstrating sharper reactions than you and I; what he is showing is that he can extract more information from the service action of his opponent and other visual clues, enabling him to move into position earlier and more efficiently than the rest of us, which, in turn, allows him to make the return – in his case, a forehand cross-court winner rather than a queen to checkmate.
This revolutionary analysis extends across the sporting domain, from badminton to baseball and from fencing to football. Top performers are not born with sharper instincts (in the same way that chess masters do not possess superior memories); instead, they possess enhanced awareness and anticipation. In cricket, for example, a first-class batsman has already figured out whether to play off the back foot or front foot more than 100 milliseconds before a bowler has even released the ball.
As Janet Starkes, professor emeritus of kinesiology at McMaster University in Canada has put it, ‘The exploitation of advance information results in the time paradox where skilled performers seem to have all the time in the world. Recognition of familiar scenarios and the chunking of perceptual information into meaningful wholes and patterns speeds up processes.’
The key thing to note is that these cannot possibly be innate skills: Federer did not come into this mortal world with knowledge of where to look or how to efficiently extract information on a service return any more than SF was born with special memory skills (he wasn’t: that is precisely why he was selected by Ericsson) or chess players have innate board-game memory skills (remember that their advantage is eliminated when the pieces are randomly placed).
No, Federer’s advantage has been gathered from experience: more precisely, it has been gained from a painstaking process of encoding the meaning of subtle patterns of movement drawn from more than ten thousand hours of practice and competition. He is able to see the patterns in his opponent’s movements in the same way that chess players are able to discern the patterns in the arrangement of pieces on a chessboard. It is his regular practice that has given him this expertise, not his genes.
You might suppose that Federer’s speed is transferable to all sports and games (rather as one is inclined to assume that SF’s memory skill is transferable), but you would be wrong. I played a match of real tennis – an ancient form of tennis played indoors with sloping roofs called penthouses, a hard ball, and entirely different techniques – with Federer at Hampton Court Palace in the summer of 2005 (part of a promotional day for his watch sponsor). I found that, for all his grace and elegance, Federer could scarcely make contact with the ball when it was played at any serious speed (neither, for that matter, could I).
Some of the onlookers were surprised by this, but this is precisely what is predicted by the new science of expertise. Speed in sport is not based on innate reaction speed, but derived from highly specific practice. I have regularly played table tennis with world-renowned footballers, tennis players, golfers, boxers, badminton players, rowers, squash players, and track and field athletes, and discovered that they are all dramatically slower in their table-tennis-specific response times than even elderly players who have had the benefit of regular practice.
Recently I went to the Birmingham home of Desmond Douglas, the Speedy Gonzales of English table tennis, to try to figure out how someone with such unimpressive innate reactions could have become the fastest man in the history of one of the world’s fastest sports. Douglas welcomed me through the door with a friendly grin: he is now in his fifties, but remains as lean and fit as when he was terrorizing players around the world with speed that seemed to defy logic.
Douglas offered the suggestion that he has a ‘great eye for the ball’, which is the way quick reactions are often ‘explained’ in high-level sport. The problem is that researchers have never been able to find any connection between sporting ability and the special powers of vision supposedly boasted by top performers. In 2000 the visual function of elite and non-elite footballers was tested using standardized measures of visual acuity, stereoscopic depth, and peripheral awareness. The elite players were no better than their less accomplished counterparts, and neither group recorded above-average levels of visual function.
It had to be something else. I asked Douglas to tell me about his early education in table tennis, and the mystery was instantly solved. It turns out that Douglas had perhaps the most unusual grounding of any international table tennis player of the last half-century. Brought up in working-class Birmingham, struggling and unmotivated in his academic work, Douglas happened upon a table tennis club at school. The tables were old and decrepit, but functional.
The problem is that they were housed in the tiniest of classrooms. ‘Looking back, it was pretty unbelievable,’ Douglas said, shaking his head. ‘There were three tables going along the length of the room to accommodate all the players who wanted to take part, but there was so little space behind the tables that we had to stand right up against the edge of the tables to play, with our backs almost touching the blackboard.’
I managed to track down a few of the others who played in that era. ‘It was an amazing time,’ one said. ‘The claustrophobia of the room forced us to play a form of “speed table tennis” where everyone had to be super-sharp. Spin and strategy hardly came into it; the only thing that mattered was speed.’
Douglas did not spend a few weeks or months honing his skills in that classroom, but the first five years of his development. ‘We all loved playing table tennis, but Des was different,’ another classmate told me. ‘While the rest of us had other hobbies and interests, he spent all his time in that classroom practising his skills and playing matches. I have never seen anyone with such dedication.’
Douglas was sometimes called the ‘lightning man’, because it seemed that he was so fast he could duck a bolt from the blue. His speed baffled opponents and teammates for decades. Even Douglas was perplexed by it. ‘Maybe I have a sixth sense,’ he said. But we can now see that the solution to the riddle is simple. In essence, Douglas spent more hours than any other player in the history of the sport encoding the characteristics of a highly specific type of table tennis: the kind played at maximum pace, close to the table. By the time he arrived in international table tennis, he was able to perceive where the ball was going before his opponents had even hit it. That is how a man with sluggish reactions became the fastest player on the planet.
It is worth pausing here to anticipate an objection or two. You might agree with the thrust of the argument that expertise in table tennis, tennis, football, or anything else requires the performer to have built up a powerful knowledge base drawn from experience. But you might still sense that something in this account is missing.
In particular you may feel that recognizing the patterns in an opponent’s movement and framing the optimal response (a cross-court forehand, say) is a very different thing from actually executing the stroke. The former is a mental skill drawn from experience, but the latter seems to be more of a physical talent requiring coordination, control, and feel. But is this schism between the mental and the physical quite what it seems?
It is often said that Federer and other top sportsmen have ‘amazing hands’, which neatly emphasizes the supposed physical dimension of hitting a winning smash or dabbing a delicate drop shot. But is there really something in Federer’s fingers or palm that sets him apart from other tennis players?
Or would it not be more accurate to