Шелест гранаты. Александр Прищепенко
Читать онлайн книгу.фонового[32] нейтрона, далее происходил на частицах, каждое поколение которых долго замедлялось, и потому не был взрывным. Цепь делений угасла сама, когда сборка раскалилась, а значит – расширилась. Дальнейшие действия физика предотвратили два неприятных последствия: другую вспышку делений после остывания сборки и загрязнение всего окружающего плутонием, который, раскалившись, мог и сбросить с себя защитную оболочку из никеля[33].
Вероятно, целью опыта было выяснить, безопасно ли монтировать сборку в заряд, окружая при этом замедляющим нейтроны бериллием. Пошли на жутковатый эксперимент потому, что во все времена далеко не все, что необходимо для реализации новых идей, можно было рассчитать. Упоминание «ослепительного блеска» следует отнести на счет эмоциональной реакции свидетелей аварии. На самом деле, это было неяркое фиолетовое свечение ионизованного гамма квантами воздуха (обычно в такой ситуации ощущается и сильный запах озона).
Важный вывод, который следует из разобранных примеров: излюбленный журналистами параметр – критическая масса – сам по себе не характеризует способность к взрыву. Для одного и того же делящегося вещества критические массы могут отличаться на порядки (в зависимости от его формы, плотности, присутствия замедлителя), причем, даже если такая масса собрана и цепная реакция происходит, взрывной она бывает отнюдь не всегда.
Ранее упоминавшийся U235 ключевую роль во многих областях уступил плутонию 239, ядро которого при делении испускает в среднем 2,895 нейтрона – больше, чем U235(2,452). К тому же в плутонии ниже сечения нейтронных реакций, не вызывающих деления.
Плутоний многолик: в разных интервалах температур он может существовать в фазах числом в полдюжины, с плотностями от 14,7 до 19,5 г/см3. «Тяжелый» плутоний предпочтителен во многих отношениях, за исключением одного: в этой (альфа) фазе он очень хрупок. Поэтому легирующей присадкой фиксируют дельта фазу[34], проигрывая в плотности чуть более 20 %, но получая пластичный и хорошо обрабатываемый металл. Уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар U235, а главное – при меньшем радиусе, что очень важно, поскольку позволяет снизить габариты критической сборки.
Впрочем, «двести тридцать третий» изотоп урана позволяет достичь критичности при массе сборок меньшей, чем в случае плутония, правда, ненамного. И получают его при облучении нейтронами тория, которого в земной коре содержится втрое больше, чем урана. Но U233 не вытеснил плутоний: уж очень интенсивно испускает гамма кванты сопутствующий ему изотоп с массовым числом 232. Брать в руки U233 – «чревато».
Известны и другие делящиеся изотопы. В 60-х годах из них грозились сделать «атомные пули», но когда их действительно выделили в осязаемых количествах и исследовали, оказалось, что «оружейные» их преимущества сомнительны, а стоимость – умопомрачительна[35].
…От пуль «страшной
32
Где бы вы не находились, такие нейтроны присутствуют рядом. Они летят из космоса, образуются в результате ядерных реакций в содержащихся в земле минералах. К счастью, фоновых нейтронов не так уж много.
33
Контакта человека с очень ядовитым плутонием стараются избежать, нанося на детали электролитические покрытия из никеля или золота. Попадание в организм бериллия тоже пользы не принесет.
34
Для этого в плутоний добавляют галлий (менее 1 % по весу). По сравнению с другими подходящими для легирования трехвалентными металлами, у галлия наименьшее сечение захвата нейтронов.
35
Кандидатами на такое применение были кюрий-245 и калифорний-251. Позже выяснилось, что критические массы уединенных шаров из них уступают плутониевому всего лишь в 4 и 10 раз соответственно и в пулю их не затолкать. Стоимость же непомерна потому, что в ядерном реакторе, где нейтроны вызывают ядерные реакции, по завершении которых и появляется оружейный изотоп, он сразу же начинает делиться, причем – активнее, чем реакторное топливо (сравним критические массы!). Наработать такие изотопы за одну загрузку реактора можно в количестве, годном разве что для анализов.
А вот при ядерном взрыве плотность нейтронного потока огромна, и она быстро спадает, что практически сводит на нет «выгорание». Такой способ более экономичен, но не реализуется по двум причинам: во-первых, ядерные взрывы запрещены; во-вторых, оружейные кюрий и калифорний и в этом случае более чем на порядок дороже полученных аналогично плутония или урана-233.