Lifespan. David Sinclair

Читать онлайн книгу.

Lifespan - David  Sinclair


Скачать книгу
school at Stanford University, he came up with the “Free Radical Theory of Aging,” which blames aging on unpaired electrons that whiz around within cells, damaging DNA through oxidation, especially in mitochondria, because that is where most free radicals are generated.28 Harman spent the better part of his life testing the theory.

      I had the pleasure of meeting the Harman family in 2013. His wife told me that Professor Harman had been taking high doses of alphalipoic acid for most of his life to quench free radicals. Considering that he worked tirelessly on his research well into his 90s, I suppose, at the very least, it didn’t hurt.

      Through the 1970s and 1980s, Harman and hundreds of other researchers tested whether antioxidants would extend the lifespan of animals. The results overall were disappointing. Although Harman had some success increasing the average lifespan of rodents, such as with the food additive butylated hydroxytoluene, none showed an increase in maximum lifespan. In other words, a cohort of study animals might live a few weeks longer, on average, but none of the animals was setting records for individual longevity. Science has since demonstrated that the positive health effects attainable from an antioxidant-rich diet are more likely caused by stimulating the body’s natural defenses against aging, including boosting the production of the body’s enzymes that eliminate free radicals, not as a result of the antioxidant activity itself.

      If old habits die hard, the free-radical idea is heroin. The theory was overturned by scientists within the cloisters of my field more than a decade ago, yet it is still widely perpetuated by purveyors of pills and drinks, who fuel a $3 billion global industry.29 With all that advertising, it is not surprising that more than 60 percent of US consumers still look for foods and beverages that are good sources of antioxidants.30

      Free radicals do cause mutations. Of course they do. You can find mutations in abundance, particularly in cells that are exposed to the outside world31 and in the mitochondrial genomes of old individuals. Mitochondrial decline is certainly a hallmark of aging and can lead to organ dysfunction. But mutations alone, especially mutations in the nuclear genome, conflict with an ever-increasing amount of evidence to the contrary.

      Arlan Richardson and Holly Van Remmen spent about a decade at the University of Texas at San Antonio testing if increasing free-radical damage or mutations in mice led to aging; it didn’t.32 In my lab and others, it has proven surprisingly simple to restore the function of mitochondria in old mice, indicating that a large part of aging is not due to mutations in mitochondrial DNA, either, at least not until late in life.33

      Although the discussion about the role of nuclear DNA mutations in aging continues, there is one fact that contradicts all these theories, one that is difficult to refute.

      Ironically, it was Szilard, in 1960, who initiated the demise of his own theory by figuring out how to clone a human cell.34 Cloning gives us the answer as to whether or not mutations cause aging. If old cells had indeed lost crucial genetic information and this was the cause of aging, we shouldn’t be able to clone new animals from older individuals. Clones would be born old.

      It’s a misconception that cloned animals age prematurely. It has been widely perpetuated in the media and even the National Institutes of Health website says so.35 Yes, it’s true that Dolly, the first cloned sheep, created by Keith Campbell and Ian Wilmut at the Roslin Institute at the University of Edinburgh, lived only half a normal lifespan and died of a progressive lung disease. But extensive analysis of her remains showed no sign of premature aging.36 Meanwhile, the list of animal species that have been cloned and proven to live a normal, healthy lifespan now includes goats, sheep, mice, and cows.37

      Because of the fact that nuclear transfer works in cloning, we can say with a high degree of confidence that aging isn’t caused by mutations in nuclear DNA. Sure, it’s possible that some cells in the body don’t mutate and those are the ones that end up making successful clones, but that seems highly unlikely. The simplest explanation is that old animals retain all the requisite genetic information to generate an entirely new, healthy animal and that mutations are not the primary cause of aging.38

      It’s certainly no dishonor to those brilliant researchers that their theories haven’t withstood the test of time. That’s what happens to most science, and perhaps all of it eventually. In The Structure of Scientific Revolutions, Thomas Kuhn noted that scientific discovery is never complete; it goes through predictable stages of evolution. When a theory succeeds at explaining previously unexplainable observations about the world, it becomes a tool that scientists can use to discover even more.

      Inevitably, however, new discoveries lead to new questions that are not entirely answerable by the theory, and those questions beget more questions. Soon the model enters crisis mode and begins to drift as scientists seek to adjust it, as little as possible, to account for that which it cannot explain.

      Crisis mode is always a fascinating time in science but one that is not for the faint of heart, as doubts about the views of previous generations continue to grow against the old guard’s protestations. But the chaos is ultimately replaced by a paradigm shift, one in which a new consensus model emerges that can explain more than the previous model.

      That’s what happened about a decade ago, as the ideas of leading scientists in the aging field began to coalesce around a new model—one that suggested that the reason so many brilliant people had struggled to identify a single cause of aging was that there wasn’t one.

      In this more nuanced view, aging and the diseases that come with it are the result of multiple “hallmarks” of aging:

      ● Genomic instability caused by DNA damage

      ● Attrition of the protective chromosomal endcaps, the telomeres

      ● Alterations to the epigenome that controls which genes are turned on and off

      ● Loss of healthy protein maintenance, known as proteostasis

      ● Deregulated nutrient sensing caused by metabolic changes

      ● Mitochondrial dysfunction

      ● Accumulation of senescent zombielike cells that inflame healthy cells

      ● Exhaustion of stem cells

      ● Altered intercellular communication and the production of inflammatory molecules

      Researchers began to cautiously agree: address these hallmarks, and you can slow down aging. Slow down aging, and you can forestall disease. Forestall disease, and you can push back death.

      Take stem cells, which have the potential to develop into many other kinds of cells: if we can keep these undifferentiated cells from tiring out, they can continue to generate all the differentiated cells necessary to heal damaged tissues and battle all kinds of diseases.

      Meanwhile, we’re improving the rates of acceptance of bone marrow transplants, which are the most common form of stem cell therapy, and using stem cells for the treatment of arthritic joints, type 1 diabetes, loss of vision, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. These stem cell–based interventions are adding years to people’s lives.

      Or take senescent cells, which have reached the end of their ability to divide but refuse to die, continuing to spit out panic signals that inflame surrounding cells: if we can kill off senescent cells or keep them from accumulating in the first place, we can keep our tissues much healthier for longer.

      The same can be said for combating telomere loss, the decline in proteostasis, and all of the other hallmarks. Each can be addressed one by one, a little at a time, in ways that can help us extend human healthspans.

      Over the past quarter century, researchers have increasingly honed their efforts


Скачать книгу

<p>28</p>

Harman concluded that the diseases related to aging, as well as aging itself, stem fundamentally from “the deleterious side attacks of free-radicals on cell constituents and on the connective tissues.” The source of the free radicals, he continued, was “molecular oxygen catalyzed in the cell by the oxidative enzymes” and metal traces. D. Harman, “Aging: A Theory Based on Free Radical and Radiation Chemistry,” Journal of Gerontology 11, no. 3 (July 1, 1956): 298–300, https://academic.oup.com/geronj/article-abstract/11/3/298/616585?redirectedFrom=fulltext.

<p>29</p>

Nutraceuticals World predicts that a rising appetite for synthetic antioxidants at the same time as a fall in costs, combined with increasing demand for them by food and beverage companies, will power market growth for the next few years. “Global Antioxidants Market Expected to Reach $4.5 Billion by 2022,” Nutraceuticals World, January 26, 2017, https://www.nutraceuticalsworld.com/contents/view_breaking-news/2017-01-26/global-antioxidants-market-expected-to-reach-45-billion-by-2022

<p>30</p>

The sharp growth in demand for drinks with a health benefit, a beverage industry website finds, goes hand in hand with consumers wanting ingredients they value. A. Del Buono, “Consumers’ Understanding of Antioxidants Grows,” Beverage Industry, January 16, 2018, https://www.bevindustry.com/articles/90832-consumers-understanding-of-antioxidants-grows?v=preview.

<p>31</p>

I. Martincorena, J. C. Fowler, A. Wabik, et al., “Somatic Mutant Clones Colonize the Human Esophagus with Age,” Science 362, no. 6417 (November 23, 2018): 911–17, https://www.ncbi.nlm.nih.gov/pubmed/30337457.

<p>32</p>

The authors concluded that their data “calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.” V. I. Pérez, A. Bokov, H. Van Remmen, et al., “Is the Oxidative Stress Theory of Aging Dead?,” Biochimica et Biophysica Acta 1790, no. 10 (October 2009): 1005–14, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789432/.

<p>33</p>

A. P. Gomes, N. L. Price, A. J. Ling, et al., “Declining NAD(+) Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication During Aging,” Cell 155, no. 7 (December 19, 2013): 1624–38, https://www.ncbi.nlm.nih.gov/pubmed/24360282.

<p>34</p>

W. Lanouette and B. Silard, Genius in the Shadows: A Biography of Leo Szilard: The Man Behind the Bomb (New York: Skyhorse Publishing, 1992).

<p>35</p>

According to the NIH fact sheet, “clones created from a cell taken from an adult might have chromosomes that are already shorter than normal, which may condemn the clones’ cells to a shorter life span.” “Cloning,” National Human Genome Research Institute, March 21, 2017, https://www.genome.gov/25020028/cloning-fact-sheet/.

<p>36</p>

In the debates over Dolly the cloned sheep, the question that has proved to be challenging to answer is how old an animal is at birth when cloned from an adult’s cell. The answer an author on the site The Conversation found was that other clones born from the same cell as Dolly lived normal lifespans. “The new Dollies are now telling us that if we take a cell from an animal of any age, and we introduce its nucleus into a nonfertilized mature egg, we can have an individual born with its lifespan fully restored.” J. Cibell, “More Lessons from Dolly the Sheep: Is a Clone Really Born at Age Zero?,” The Conversation, February 17, 2017, https://theconversation.com/more-lessons-from-dolly-the-sheep-is-a-clone-really-born-at-age-zero-73031.

<p>37</p>

Though some cloned animals match their species’ rates of normal aging, it’s a field that still needs further analysis to get beyond the largely anecdotal evidence so far collected. J. P. Burgstaller and G. Brem, “Aging of Cloned Animals: A Mini-Review,” Gerontology 63, no. 5 (August 2017): 417–25, https://www.karger.com/Article/FullText/452444.

<p>38</p>

University of Bath researchers found in cloned mice that the telomeres protecting the ends of chromosomes were, surprisingly, slightly longer in successive generations and demonstrated no evidence of premature aging. T. Wakayama, Y. Shinkai, K. L. K. Tamashiro, et al., “Ageing: Cloning of Mice to Six Generations,” Nature 407 (September 21, 2000): 318–19. “Despite the length of telomeres reported in different studies, most clones appear to be aging normally. In fact, the first cattle clones ever produced are alive, healthy, and are 10 years old as of January 2008”; “Myths About Cloning,” U.S. Food & Drug Administration, August 29, 2018, https://www.fda.gov/animalveterinary/safetyhealth/animalcloning/ucm055512.htm.