Principles of Virology. Jane Flint

Читать онлайн книгу.

Principles of Virology - Jane Flint


Скачать книгу
Portion of the cryo-EM difference map corresponding to the surface of one icosahedral face of the capsid. The crystal structures of the penton base (yellow) and the hexons (green, cyan, blue, and magenta at different positions) at appropriate resolution were docked within the cryo-EM density at 6-Å resolution. The cryo-EM density that does not correspond to these structural units (the difference map) is shown in red. At this resolution, the difference map revealed four trimeric structures located between neighboring hexons and three bundles of coiled-coiled α-helices. Both assemblies are now known to be formed by cement protein IX. Adapted from Saban SD et al. 2006. J Virol 80:12049–12059, with permission. Courtesy of Phoebe Stewart, Vanderbilt University Medical Center.

      From a structural point of view, the best-understood helical nucleocapsid is that of tobacco mosaic virus, the very first virus to be identified. The virus particle comprises a single molecule of (+) strand RNA, about 6.4 kb in length, enclosed within a helical protein coat (Fig. 4.6B; see also Fig. 1.9). The coat is built from a single protein with an extended shape. Repetitive interactions among coat protein subunits form disks, which in turn assemble as a long, rod-like, right-handed helix. In the interior of the helix, each coat protein molecule binds three nucleotides of the RNA genome. The coat protein subunits therefore engage in identical interactions with one another and with the genome, allowing the construction of a large, stable structure from multiple copies of a single protein.

      METHODS

       Nanoconstruction with virus particles

      Nanochemistry is the synthesis and study of well-defined structures with dimensions of 1 to 100 nm. Molecular biologists study nanochemistry, nanostructures, and molecular machines including the ribosome and membrane-bound signaling complexes. Icosahedral viruses are proving to be precision building blocks for nanochemistry. The icosahedral cowpea mosaic virus particle is 30 nm in diameter, and its atomic structure is known. Grams of particles can be prepared easily from kilograms of infected leaves, insertional mutagenesis is straightforward, and precise amino acid changes can be introduced. As illustrated in panel A of the figure, cysteine residues inserted in the capsid protein provide functional groups for chemical attachment of 60 precisely placed molecules, in this case, gold particles.

      High local concentrations of attached chemical agents, coupled with precise placement, and the propensity of virus-like particles for self-organization into two- and three-dimensional lattices of well-ordered arrays of particles enable rather remarkable nanoconstruction. For example, the surface of the filamentous bacteriophage M13 can be patterned to carry separate binding sites for gold and cobalt oxide and assembled into nanowires to form the anodes of small lithium ion batteries. Remarkably, this bacteriophage also displays intrinsic piezoelectric properties, that is, the ability to generate an electric charge in response to mechanical deformation, and vice versa. The basis of this property is not fully understood, but modification of the sequence of the major protein to increase its dipole moment (figure, panel B) augmented the piezoelectric strength of the bacteriophage. Assembly of the modified M13 into thin films was exploited to build a piezoelectric generator that produced up to 6 mÅ of current and 400 mV of potential, sufficient to operate a liquid crystal display (see Movie 4.1: http://bit.ly/Virology_piezo). Virus particles also have considerable potential for the delivery of drugs and other medically relevant molecules (Volume II, Chapter 9).

image

      Gold particles attached to cowpea mosaic virus. (A) Cryo-EM was performed on derivatized cowpea mosaic virus with a cysteine residue inserted on the surface of each of the 60 subunits and to which nanogold particles with a diameter of 1.4 nm were chemically linked. (Left) Difference electron density map obtained by subtracting the density of unaltered cowpea mosaic virus at 29 Å from the density map of the derivatized virus. This procedure reveals both the genome (green) and the gold nanoparticles. (Right) A section of the difference map imposed on the atomic model of cowpea mosaic virus. The positions of the gold indicate that it is attached at the sites of the introduced cysteine residues. Courtesy of M.G. Finn and J. Johnson, The Scripps Research Institute. (B) Increasing the piezoelectric strength of phage M13. Schematic side view of a segment of M13 containing 10 copies (3 of which are shown) of the helical major coat protein modified to contain four glutamine residues at its N terminus. The dipole moments (yellow arrows) are directed from the N terminus (blue, positive) to the C terminus (red, negative).

      Viruses are not just for infections anymore! They will provide a rich source of building blocks for applications spanning the worlds of molecular biology, materials science, and medicine.

       Lee BY, Zhang J, Zueger C, Chung WJ, Yoo SY, Wang E, Meyer J, Ramesh R, Lee SW. 2012. Virus-based piezoelectric energy generation. Nat Nanotechnol 7:351–356.

       Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM. 2006. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888.

       Tarascon JM. 2009. Nanomaterials: viruses electrify battery research. Nat Nanotechnol 4:341–342.

       Wang Q, Lin T, Tang L, Johnson JE, Finn MG. 2002. Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed Engl 41:459–462.


Скачать книгу