Genome Engineering for Crop Improvement. Группа авторов

Читать онлайн книгу.

Genome Engineering for Crop Improvement - Группа авторов


Скачать книгу
soybean. Plant Physiology 169: 960–970.

      63 Li, Q., Li, L., Liu, Y. et al. (2017). Influence of TaGW2‐6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science 263: 226–235.

      64 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics 44: 465.

      65 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68.

      66 Liang, Z., Chen, K., Li, T. et al. (2017). Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8: 1–5.

      67 Liu, G., Wu, Y., Xu, M. et al. (2016). Virus‐induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. International Journal of Molecular Sciences 17: 1557.

      68 Liu, J., Wu, X., Yao, X. et al. (2018). Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences 115: 11327–11332.

      69 Lloyd, A.H., Wang, D., and Timmis, J.N. (2012). Single molecule PCR reveals similar patterns of non‐homologous DSB repair in tobacco and Arabidopsis. PLoSOne 7 (2): e32255.

      70 Loguercio, L.L., Zhang, J.Q., and Wilkins, T.A. (1999). Differential regulation of six novel MYB‐domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular Genomics and Genetics 261: 660–671.

      71 Lou, J., Chen, L., Yue, G. et al. (2009). QTL mapping of grain quality traits in rice. Journal of Cereal Science 50: 145–151.

      72  Ma, X., Zhang, Q., Zhu, Q. et al. (2015). A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8: 1274–1284.

      73 Machado, A., Wu, Y., Yang, Y. et al. (2009). The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant Journal 59: 52–62.

      74 Manik, N. and Ravikesavan, R. (2009). Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. Biotechnology and Molecular Biology Reviews 4: 11–28.

      75 Meenu, M. and Xu, B. (2018). A critical review on anti‐diabetic and anti‐obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition 59 (18): 3019–3031.

      76 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42: 401–407.

      77 Morgante, M. (2006). Plant genome organisation and diversity: the year of the junk. Current Opinion in Biotechnology 17: 168–173.

      78 Nalam, V.J., Alam, S., Keereetaweep, J. et al. (2015). Facilitation of Fusariumgraminearum infection by 9‐lipoxygenases in Arabidopsis and wheat. Molecular Plant‐Microbe Interactions 28: 1142–1152.

      79 Nester, E.W. (2014). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5: 730.

      80 Nordin, Y. and Lantbruksakademien, K.S.O. (2008). Golden Rice and Other Biofortified Food Crops for Developing Countries: Challenges and Potential. Rome, Italy: FAO.

      81 Pacher, M. and Puchta, H. (2017). From classical mutagenesis to nuclease based breeding directing natural DNA repair for a natural end‐product. Plant Journal 90: 819–833.

      82 Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread‐making quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141–153.

      83 Pegoraro, C., da Mertz, L.M., Maia, L.C. et al. (2011). Importance of heat shock proteins in maize. Journal of Crop Science and Biotechnology 14: 85–95.

      84 Peng, B., Kong, H., Li, Y. et al. (2014). OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications 5: 4847.

      85 Pham, A.T., Lee, J.D., Shannon, J.G., and Bilyeu, K.D. (2011). A novel FAD2‐1 a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theoretical and Applied Genetics 123: 793–802.

      86 Pliatsika, V. and Rigoutsos, I. (2015). Off‐spotter: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct 10: 4.

      87 Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.

      88 Prykhozhij, S.V., Rajan, V., Gaston, D., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10: e0119372.

      89 Puchta, H. (2005). The repair of double‐strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56: 1–14.

      90 Qi, W., Zhu, T., Tian, Z. et al. (2016). High‐efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA processing system‐based strategy in maize. BMC Biotechnology 16: 58.

      91  Qin, Y.M. and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell growth mode. Current Opinion in Plant Biology 14: 106–111.

      92 Quétier, F. (2016). The CRISPR‐Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Science 242: 65–76.

      93 Regina, A., Bird, A., Topping, D. et al. (2006). High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats. Proceedings of the National Academy of Sciences 103: 3546–3551.

      94 Ruan, Y. (2007). Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single‐celled cotton fibre. Functional Plant Biology 34: 1–10.

      95 Sabouri, A., Rabiei, B., Toorchi, M. et al. (2012). Mapping quantitative trait loci (QTL) associated with cooking quality in rice (Oryza sativa. L). Australian Journal of Crop Science 6: 808.

      96 Sánchez‐León, S., Gil‐Humanes, J., Ozuna, C.V. et al. (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16: 902–910.

      97 Schaart, J.G., Van De Wiel, C.C.M., Lotz, L.A.P., and Smulders, M.J.M. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science 21: 438–449.

      98 Scheben, A., Wolter, F., Batley, J. et al. (2017). Towards CRISPR/Cas crops–bringing together and genome editing. New Phytology 216: 682–698.

      99 Scherf, K.A., Koehler, P., and Wieser, H. (2016). Gluten and wheat sensitivities an overview. Journal of Cereal Science 67: 2–11.

      100 Schmutz, J., Cannon, S.B., Schlueter, J. et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.

      101 Schnable, P.S., Ware, D., Fulton, R.S. et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

      102 Schubert, D. and Williams, D. (2006). Cisgenic; as a product designation. Nature Biotechnology 24: 1327.

      103 Sestili, F., Janni, M., Doherty, A. et al. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biology 10: 144.

      104 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395–2410.

      105 Shan, Q., Wang, Y., Li, J., and Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9: 2395.

      106 Shen, L., Li, J., Fu, Y. et al. (2017). Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system. Chinese Journal of Rice Science 31: 223–231.

      107 Shewry, P.R. and Halford, N.G. (2002). Cereal seed storage proteins: structures, properties and role


Скачать книгу