The Works of William Harvey M.D. William Harvey

Читать онлайн книгу.

The Works of William Harvey M.D - William  Harvey


Скачать книгу
charged, and for the distribution of which from the heart they are provided, and that this body is nothing else than blood. But if this blood be said to be drawn from the heart into the arteries by the diastole of these vessels, it is then assumed that the arteries by their distension are filled with blood, and not with the ambient air, as heretofore; for if they be said also to become filled with air from the ambient atmosphere, how and when, I ask, can they receive blood from the heart? If it be answered: during the systole; I say, that seems impossible; the arteries would then have to fill whilst they contracted; in other words, to fill, and yet not become distended. But if it be said: during the diastole, they would then, and for two opposite purposes, be receiving both blood and air, and heat and cold; which is improbable. Further, when it is affirmed that the diastole of the heart and arteries is simultaneous, and the systole of the two is also concurrent, there is another incongruity. For how can two bodies mutually connected, which are simultaneously distended, attract or draw anything from one another; or, being simultaneously contracted, receive anything from each other? And then, it seems impossible that one body can thus attract another body into itself, so as to become distended, seeing that to be distended is to be passive, unless, in the manner of a sponge, previously compressed by an external force, whilst it is returning to its natural state. But it is difficult to conceive that there can be anything of this kind in the arteries. The arteries dilate, because they are filled like bladders or leathern bottles; they are not filled because they expand like bellows. This I think easy of demonstration; and indeed conceive that I have already proved it. Nevertheless, in that book of Galen headed ‘Quod Sanguis continetur in Arteriis,’ he quotes an experiment to prove the contrary: An artery having been exposed, is opened longitudinally, and a reed or other pervious tube, by which the blood is prevented from being lost, and the wound is closed, is inserted into the vessel through the opening. “So long,” he says, “as things are thus arranged, the whole artery will pulsate; but if you now throw a ligature about the vessel and tightly compress its tunics over the tube, you will no longer see the artery beating beyond the ligature.” I have never performed this experiment of Galen’s, nor do I think that it could very well be performed in the living body, on account of the profuse flow of blood that would take place from the vessel which was operated on; neither would the tube effectually close the wound in the vessel without a ligature; and I cannot doubt but that the blood would be found to flow out between the tube and the vessel. Still Galen appears by this experiment to prove both that the pulsative faculty extends from the heart by the walls of the arteries, and that the arteries, whilst they dilate, are filled by that pulsific force, because they expand like bellows, and do not dilate because they are filled like skins. But the contrary is obvious in arteriotomy and in wounds; for the blood spurting from the arteries escapes with force, now farther, now not so far, alternately, or in jets; and the jet always takes place with the diastole of the artery, never with the systole. By which it clearly appears that the artery is dilated by the impulse of the blood; for of itself it would not throw the blood to such a distance, and whilst it was dilating; it ought rather to draw air into its cavity through the wound, were those things true that are commonly stated concerning the uses of the arteries. Nor let the thickness of the arterial tunics impose upon us, and lead us to conclude that the pulsative property proceeds along them from the heart. For in several animals the arteries do not apparently differ from the veins; and in extreme parts of the body, where the arteries are minutely subdivided, as in the brain, the hand, &c., no one could distinguish the arteries from the veins by the dissimilar characters of their coats; the tunics of both are identical. And then, in an aneurism proceeding from a wounded or eroded artery, the pulsation is precisely the same as in the other arteries, and yet it has no proper arterial tunic. This the learned Riolanus testifies to, along with me, in his Seventh Book.

      Nor let any one imagine that the uses of the pulse and the respiration are the same, because under the influence of the same causes, such as running, anger, the warm bath, or any other heating thing, as Galen says, they become more frequent and forcible together. For, not only is experience in opposition to this idea, though Galen endeavours to explain it away, when we see that with excessive repletion the pulse beats more forcibly, whilst the respiration is diminished in amount; but in young persons the pulse is quick, whilst respiration is slow. So is it also in alarm, and amidst care, and under anxiety of mind; sometimes, too, in fevers, the pulse is rapid, but the respiration is slower than usual.

      These and other objections of the same kind may be urged against the opinions mentioned. Nor are the views that are entertained of the offices and pulse of the heart, perhaps, less bound up with great and most inextricable difficulties. The heart, it is vulgarly said, is the fountain and workshop of the vital spirits, the centre from whence life is dispensed to the several parts of the body; and yet it is denied that the right ventricle makes spirits; it is rather held to supply nourishment to the lungs; whence it is maintained that fishes are without any right ventricle (and indeed every animal wants a right ventricle which is unfurnished with lungs), and that the right ventricle is present solely for the sake of the lungs.

      1. Why, I ask, when we see that the structure of both ventricles is almost identical, there being the same apparatus of fibres, and braces, and valves, and vessels, and auricles, and in both the same infarction of blood, in the subjects of our dissections, of the like black colour, and coagulated—why, I say, should their uses be imagined to be different, when the action, motion, and pulse of both are the same? If the three tricuspid valves placed at the entrance into the right ventricle prove obstacles to the reflux of the blood into the vena cava, and if the three semilunar valves which are situated at the commencement of the pulmonary artery be there, that they may prevent the return of the blood into the ventricle; wherefore, when we find similar structures in connexion with the left ventricle, should we deny that they are there for the same end, of preventing here the egress, there the regurgitation of the blood?

      2. And again, when we see that these structures, in point of size, form, and situation, are almost in every respect the same in the left as in the right ventricle, wherefore should it be maintained that things are here arranged in connexion with the egress and regress of spirits, there, i.e. in the right, of blood. The same arrangement cannot be held fitted to favour or impede the motion of blood and of spirits indifferently.

      3. And when we observe that the passages and vessels are severally in relation to one another in point of size, viz., the pulmonary artery to the pulmonary veins; wherefore should the one be imagined destined to a private or particular purpose, that to wit, of nourishing the lungs, the other to a public and general function?

      4. And, as Realdus Columbus says, how can it be conceived that such a quantity of blood should be required for the nutrition of the lungs; the vessel that leads to them, the vena arteriosa or pulmonary artery being of greater capacity than both the iliac veins?

      5. And I ask further; as the lungs are so close at hand, and in continual motion, and the vessel that supplies them is of such dimensions, what is the use or meaning of the pulse of the right ventricle? and why was nature reduced to the necessity of adding another ventricle for the sole purpose of nourishing the lungs?

      When it is said that the left ventricle obtains materials for the formation of spirits, air to wit, and blood, from the lungs and right sinuses of the heart, and in like manner sends spirituous blood into the aorta, drawing fuliginous vapours from thence, and sending them by the arteria venosa into the lungs, whence spirits are at the same time obtained for transmission into the aorta, I ask how, and by what means, is the separation effected? and how comes it that spirits and fuliginous vapours can pass hither and thither without admixture or confusion? If the mitral cuspidate valves do not prevent the egress of fuliginous vapours to the lungs, how should they oppose the escape of air? and how should the semilunars hinder the regress of spirits from the aorta upon each supervening diastole of the heart? and, above all, how can they say that the spirituous blood is sent from the arteria venalis (pulmonary veins) by the left ventricle into the lungs without any obstacle to its passage from the mitral valves, when they have previously asserted that the air entered by the same vessel from the lungs into the left ventricle, and have brought forward these same mitral valves as obstacles to its retrogression? Good God! how should the mitral valves prevent regurgitation of air and not of blood?

      Further, when they dedicate the vena arteriosa (or pulmonary artery), a vessel of great size, and having the


Скачать книгу