Население Земли как растущая иерархическая сеть II. Анатолий Васильевич Молчанов

Читать онлайн книгу.

Население Земли как растущая иерархическая сеть II - Анатолий Васильевич Молчанов


Скачать книгу
этому разностному уравнению необходимо добавить условие завершение цикла. Как только в процессе итераций число носителей N(t) достигнет значения, достаточного для сборки нового клаттера, нужно сделать подстановку:

      Рис. 3. Условие подстановки.

      Вот решение этого уравнения в системе MathCAD (здесь τ = 1, время измеряется в циклах):

      Рис. 4. Алгоритм решения разностного уравнения.

      Зависимость численности носителей от времени получается такой же, как в модели роста клаттеров по циклам U2(C). Если число собранных за цикл клаттеров значительно меньше размера сети (второй этап ее роста), то и в этом случае данное разностное уравнение служит хорошим приближением алгоритму.

      При этом N(t) мало меняется за время τ. Если, к тому же N(t) >> K, то дифференциальное уравнение может служить хорошим приближением разностному.

      Рис. 5. Переход от разностного уравнения к уравнению Капицы.

      Здесь τ – время цикла сети, равное постоянной времени Капицы. Этим же уравнением описывается теоретическая гипербола и численность населения мира N2(t) = kN(t). Важно понимать следующее: зависимость N(t), задаваемая алгоритмом роста сети, может быть описана уравнением Капицы на всем протяжении гиперболического роста.

      Тем не менее гиперболы роста на этапах до момента начала неолита и после момента начала неолита – отличаются. Дело в том, что теоретически рост сети на первом этапе описывается уравнением Капицы лишь приблизительно.

      Тогда как на втором этапе, когда рост согласно алгоритму резко ускоряется, он может быть в точности описан теоретической гиперболой, которая, как мы неоднократно отмечали ранее, является «точечной» функцией (т. е. ее областью определения и множеством значений являются 256 фиксированных значений времени и численности), все точки которой лежат на гиперболе, являющейся решением уравнения Капицы.

      Поэтому аппроксимирующие зависимости численности от времени до, и после начала неолита – отличаются, и общее решение «сшивается» из двух различных гипербол. Поэтому в момент начала неолита скорость роста как функция времени (теоретически) претерпевает разрыв.

      Рис. 6. Неолитический скачок скорости роста населения Земли.

      Теоретическая гипербола как результат алгоритма роста сети совпадает с гиперболой, являющейся решением уравнения Капицы. Для описания гиперболического роста численности населения мира необходимо домножить N(t) на зомби-коэффициент k ≈ 1.1: N2(t) = kN(t). Парадоксальная гиперболическая зависимость численности населения Земли от времени возникает (при заданном алгоритме роста сети) по причине постоянства времени цикла.

      История

Гармонические сети и ноосфера

      Можно ли всерьез сомневаться в том, что разум – эволюционное достояние только человека? И, следовательно, можем ли мы из какой-то ложной скромности колебаться и не признавать, что обладание разумом дает человеку коренной перевес над всей предшествующей ему жизнью?

Пьер
Скачать книгу