Soil Bioremediation. Группа авторов

Читать онлайн книгу.

Soil Bioremediation - Группа авторов


Скачать книгу
P.J. et al. (2009). Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials 172: 601–605.

      59 59 Gentry, T.J., Rensing, C., and Pepper, I.L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology 34: 447–494.

      60 60 Goldstein, R.M., Mallory, L.M., and Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Applied Environmental Microbiology 50: 977–983.

      61 61 Leahy, J.G. and Colwell, R.R. (1990). Microbial‐degradation of hydrocarbons in the environment. Microbiologial Reviews 54: 305–315.

      62 62 Mishra, S., Jyot, J., Kuhad, R.C. et al. (2001). In situ bioremediation potential of an oily sludge‐degrading bacterial consortium. Current Microbiology 43: 328–335.

      63 63 Moslemy, P., Neufeld, R.J., and Guiot, S.R. (2002). Biodegradation of gasoline by gellan gum‐encapsulated bacterial cells. Biotechnology and Bioengineering 80: 175–184.

      64 64 Obuekwe, C.O. and Al‐Muttawa, E.M. (2001). Self‐immobilized bacterial cultures with potential for application as ready‐to‐use seeds for petroleum bioremediation. Biotechnology Letters 23: 1025–1032.

      65 65 McLoughlin, A.J. (1994). Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. In: Biotechnics/Wastewater (ed. T. Scheper), 1–45. Berlin: Springer.

      66 66 Cassidy, M.B., Lee, H., and Trevors, J.T. (1996). Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology and Biotechnology 16: 79–101.

      67 67 vanVeen, J.A., vanOverbeek, L.S., and vanElsas, J.D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews 61: 121–135.

      68 68 Bouchez, T., Patureau, D., Dabert, P. et al. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology 2: 179–190.

      69 69 Dibble, J.T. and Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied Environmental Microbiology 37: 729–739.

      70 70 Atlas, R.M. (1995). Bioremediation of petroleum pollutants. International Biodeterioration and Biodegradation 35: 317–327.

      71 71 Delille, D., Delille, B., and Pelletier, E. (2002). Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microbial Ecology 44: 118–126.

      72 72 Nikolopoulou, M. and Kalogerakis, N. (2009). Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. Journal of Chemical Technology and Biotechnology 84: 802–807.

      73 73 Sarkar, D., Ferguson, M., Datta, R. et al. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution 136: 187–195.

      74 74 Sugai, S.F., Lindstrom, J.E., and Braddock, J.F. (1997). Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environmental Science and Technology 31: 1564–1572.

      75 75 Mulkins‐Phillips, G.J. and Stewart, J.E. (1974). Effect of environmental parameters on bacterial‐degradation of bunker‐C oil, crude oils, and hydrocarbons. Applied Microbiology 28: 915–922.

      76 76 Horel, A. and Schiewer, S. (2009). Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Science and Technology 58: 113–119.

      77 77 Bordoloi, N.K. and Konwar, B.K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials 170: 495–505.

      78 78 Ron, E.Z. and Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13: 249–252.

      79 79 Baek, K.H., Yoon, B.D., Kim, B.H. et al. (2007). Monitoring of microbial diversity and activity during bioremediation of crude OH‐contaminated soil with different treatments. Journal of Microbiology and Biotechnology 17: 67–73.

      80 80 Hamdi, H., Benzarti, S., Manusadzianas, L. et al. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39: 1926–1935.

      81 81 Hankard, P.K., Svendsen, C., Wright, J. et al. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Science of the Total Environment 330: 9–20.

      82 82 Bento, F.M., Camargo, F.A.O., Okeke, B.C. et al. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresoures Technology 96: 1049–1055.

      83 83 Thomassin‐Lacroix, E.J.M., Eriksson, M., Reimer, K.J. et al. (2002). Biostimulation and bioaugmentation for on‐site treatment of weathered diesel fuel in Arctic soil. Applied Microbiology and Biotechnology 59: 551–556.

      84 84 Simon, M.A., Bonner, J.S., McDonald, T.J. et al. (1999). Bioaugmentation for the enhanced bioremediation of petroleum in a wetland. Polycyclic Aromatic Compounds 14: 231–239.

      85 85 Lendvay, J.M., Loffler, F.E., Dollhopf, M. et al. (2003). Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environmental Science and Technology 37: 1422–1431.

      Muhammad Mahroz Hussain1, Zia Ur Rahman Farooqi1, Junaid Latif 2, Muhammad Umair Mubarak1, and Fazila Younas1

       1 Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan

       2 College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China


Скачать книгу