Biosurfactants for a Sustainable Future. Группа авторов
Читать онлайн книгу.Majhi, P.R. and Blume, A. (2001). Thermodynamic vharacterization of temperature‐induced micellization and demicellization of detergents studied by differential scanning calorimetry. Langmuir 17: 3844–3851.
173 173 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26: 17958–17968.
174 174 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Solution self‐assembly and adsorption at the air−water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 26: 18281–18292.
175 175 Ishigami, Y., Gama, Y., Nagahora, H. et al. (1987). The pH‐sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem. Lett.: 16(5):763–16(5):766.
176 176 Whang, L.‐M., Liu, P.‐W.G., Ma, C.‐C., and Cheng, S.‐S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel‐contaminated water and soil. J. Hazard. Mater. 151: 155–163.
177 177 Onaizi, S.A., Nasser, M.S., and Twaiq, F.A. (2012). Micellization and interfacial behavior of a synthetic surfactant‐biosurfactant mixture. Colloids Surf., A 415: 388–393.
178 178 Otto, R.T., Daniel, H.‐J., Pekin, G. et al. (1999). Production of sophorolipids from whey. II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Appl. Microbiol. Biotechnol. 52: 495–501.
179 179 Chen, M., Dong, C., Penfold, J. et al. (2011). Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface. Langmuir 27: 8854–8866.
180 180 Ashby, R.D., Solaiman, D.K.Y., and Foglia, T.A. (2008). Property control of sophorolipids: Influence of fatty acid substrate and blending. Biotechnol. Lett. 30: 1093–1100.
181 181 Rosen, M.J., Mathias, J.H., and Davenport, L. (1999). Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 15: 7340–7346.
182 182 Rosen, M.J., Cohen, A.W., Dahanayake, M., and Hua, X.Y. (1982). Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2‐dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem. 86: 541–545.
183 183 Bakshi, M.S., Singh, K., Kaur, G. et al. (2006). Spectroscopic investigation on the hydrophobicity in the mixtures of nonionic plus twin tail alkylammonium bromide surfactants. Colloids Surf., A 278: 129–139.
184 184 Chen, L.‐J., Lin, S.‐Y., Huang, C.‐C., and Chen, E.‐M. (1998). Temperature dependence of critical micelle concentration of polyoxyethylenated non‐ionic surfactants. Colloids Surf., A 135: 175–181.
185 185 Sulthana, S.B., Bhat, S.G.T., and Rakshit, A.K. (1997). Studies of the effect of additives on the surface and thermodynamic properties of poly(oxyethylene(10)) lauryl ether in aqueous solution. Langmuir 13: 4562–4568.
186 186 Tyrode, E., Johnson, C.M., Kumpulainen, A. et al. (2005). Hydration state of nonionic surfactant monolayers at the liquid/vapor interface: Structure determination by vibrational sum frequency spectroscopy. J. Am. Chem. Soc. 127: 16848–16859.
187 187 Tyrode, E., Johnson, C.M., Rutland, M.W., and Claesson, P.M. (2007). Structure and hydration of poly(ethylene oxide) surfactants at the air /liquid interface. A vibrational sum frequency spectroscopy study. J. Phys. Chem. C 111: 11642–11652.
188 188 Kumpulainen, A.J., Persson, C.M., Eriksson, J.C. et al. (2005). Soluble monolayers of n‐decyl glucopyranoside and n‐decyl maltopyranoside. Phase changes in the gaseous to the liquid‐expanded range. Langmuir 21: 305–315.
189 189 Gorin, P.A.J., Spencer, J.F.T., and Tulloch, A.P. (1961). Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem. 39: 846–855.
190 190 Ozdener, M.H., Ashby, R.D., Jyotaki, M. et al. (2019). Sophorolipid biosurfactants activate taste receptor type 1 member 3‐mediated taste responses and block responses to bitter taste in vitro; and in vivo. J. Surfactant Deterg. 22: 441–449.
191 191 Penfold, J., Chen, M., Thomas, R.K. et al. (2011). Solution self‐assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27: 8867–8877.
192 192 Manet, S., Cuvier, A.‐S., Valotteau, C. et al. (2015). Structure of bolaamphiphile sophorolipid micelles characterized with SAXS, SANS, and MD simulations. J. Phys. Chem. B 119: 13113–13133.
193 193 Cecutti, C., Focher, B., Perly, B., and Zemb, T. (1991). Glycolipid self‐assembly: Micellar structure. Langmuir 7: 2580–2585.
194 194 Zhou, S., Xu, C., Wang, J. et al. (2004). Supramolecular assemblies of a naturally derived sophorolipid. Langmuir 20: 7926–7932.
195 195 Baccile, N., Pedersen, J.S., Pehau‐Arnaudete, G., and Van Bogaertf, I.N.A. (2013). Surface charge of acidic sophorolipid micelles: Effect of base and time. Soft Matter 9: 4911–4922.
196 196 Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization, and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488–494.
197 197 Kakinuma, A., Hori, M., Sugino, H. et al. (1969). Determination of the location of the lactone ring in surfactin. Agric. Biol. Chem. 33: 1523–1524.
198 198 Kakinuma, A., Ouchida, A., Shima, T. et al. (1969). Confirmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem. 33: 1669–1671.
199 199 Kakinuma, A., Sugino, H., Isono, M. et al. (1969). Determination of fatty acids in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem. 33: 973–976.
200 200 Kakinuma, A., Hori, M., Isono, M. et al. (1969d). Determination of amino acid sequence of surfactin, a crystalline peptide‐lipid surfactant produced by Bacillus subtilis. Agric. Biol. Chem. 33: 971–972.
201 201 Bonmatin, J.M., Genest, M., Labbe, H., and Ptak, M. (1994). Solution three‐dimensional structure of surfactin: A cyclic lipopeptide studied by 1H‐NMR, distance geometry, and molecular dynamics. Biopolymers 34: 975–986.
202 202 Vass, E., Besson, F., Majer, Z. et al. (2001). Ca2+‐induced changes of surfactin conformation: An FTIR and circular dichroism study. Biochem. Biophys. Res. Commun. 282: 361–367.
203 203 Tsan, P., Volpon, L., Besson, F., and Lancelin, J.‐M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 129: 1968–1977.
204 204 Zou, A., Liu, J., Garamus, V.M. et al. (2010). Micellization activity of the natural lipopeptide [Glu1, Asp5] surfactin‐C15 in aqueous solution. J. Phys. Chem. B 114: 2712–2718.
205 205 Razafindralambo, H., Thonart, P., and Paquot, M. (2004). Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J. Surfactant Deterg. 7: 41–46.
206 206 Thimon, L., Peypoux, F., and Michel, G. (1992). Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol. Lett. 14: 713–718.
207 207 Thimon, L., Peypoux, F., Wallach, J., and Michel, G. (1993). Ionophorous and sequestering properties of surfactin, a biosurfactant from Bacillus subtilis. Colloids Surf. B. Biointerfaces 1: 57–62.
208 208 Li, Y., Ye, R.‐Q., and Mu, B.‐Z. (2009). Influence of sodium ions on micelles of surfactin‐C16 in solution. J. Surfactant Deterg. 12: 31–36.
209 209 Li, Y., Zou, A.‐H., Ye, R.‐Q., and Mu, B.‐Z. (2009). Counterion‐induced changes to the micellization of surfactin‐C16 aqueous solution. J. Phys. Chem. B 113: 15272–15277.
210 210 Han, Y., Huang, X., Cao, M., and Wang, Y. (2008). Micellization of surfactin and its effect on the aggregate conformation of amyloid β(1‐40). J. Phys. Chem. B 112: 15195–15201.
211 211 Ishigami, Y., Osman, M., Nakahara, H. et al. (1995). Significance of β‐sheet