Biosurfactants for a Sustainable Future. Группа авторов
Читать онлайн книгу.soil in cold environments. Int. Biodeter. Biodegr. 142: 58–72.
10 10 Malavenda, R., Rizzo, C., Michaud, L. et al. (2015). Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol. 38: 1565–1574.
11 11 Geys, R., Soetaert, W., and Van Bogaert, I. (2014). Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 30: 66–72.
12 12 Jahan, R., Bodratti, A.M., Tsianou, M., and Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. https://doi.org/10.1016/j.cis.2019.102061.
13 13 Li, X., Islam, M.M., Chen, L. et al. (2020). Metagenomics‐guided discovery of potential metallothionein genes from the soil microbiome that confer Cu and/or Cd resistance. Appl. Environ. Microbiol. 86 (9): e02907–e02919.
14 14 Dutta, S., Rajnish, K.N., Samuel, M.S. et al. (2020). Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311‐020‐01010‐z.
15 15 Trindade, M., van Zyl, L.J., Navarro‐Fernandez, J., and Elrazak, A.A. (2015). Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front. Microbiol. 6: 1–14.
16 16 Kisand, V., Valente, A., Lahm, A. et al. (2012). Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring. PLoS One 7 (8): e43630. https://doi.org/10.1371/journal.pone.0043630.
17 17 Sarma, H., Nava, A.R., and Prasad, M.N.V. (2019). Mechanistic understanding and future prospect of microbe‐enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environ. Technol. Innov. 13: 318–330.
18 18 Sarma, H. and Prasad, M.N.V. (2018). Metabolic engineering of rhizobacteria associated with plants for remediation of toxic metals and metalloids. In: Transgenic Plant Technology (ed. M.N.V. Prasad). Elsevier, Netherlands, 299–318. eBook ISBN: 9780128143902, Paperback ISBN: 9780128143896.
19 19 Kennedy, J., Flemer, B., Jackson, S.A. et al. (2010). Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar. Drugs 8: 608–628.
20 20 Montaser, R. and Luesch, H. (2011). Marine natural products: a wave of new drugs? Future Med. Chem. 3: 1475–1489. https://doi.org/10.4155/fmc.11.118.
21 21 Rocha‐Martin, J., Harrington, C., Dobson, A., and O'Gara, F. (2014). Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar. Drugs 12: 3516–3559. https://doi.org/10.3390/md12063516.
22 22 Sarma, H., Islam, N.F., Borgohain, P. et al. (2016). Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, Northeast India: Implications for the bio economy. Emerging Contam. 2 (3): 119–127.
23 23 Sharma, D., Sarma, H., Hazarika, S. et al. (2018). Agro‐ecosystem diversity in petroleum and natural gas explored sites in Assam state, north‐eastern India: Socio‐economic perspectives. In: Sustainable Agriculture Reviews 27 (ed. E. Lichtfouse). Springer, Cham, 37–60.
24 24 Sarma, H. and Prasad, M.N.V. (2016). Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals‐contaminated sites in Assam, north eastern state of India, for boosting bioeconomy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 609–626. Elsevier, USA, Chapter 24. doi:https://doi.org/10.1016/B978‐0‐12‐802830‐8.00024‐1. ISBN: 978‐0‐12‐802830‐8.
25 25 Sharma, N., Lavania, M., Kukreti, V., and Lal, B. (2020). Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs. PLoS One 15 (5): e0229889. https://doi.org/10.1371/journal.pone.0229889.
26 26 Varjani, S.J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277–286.
27 27 Tian, Z.‐J., Chen, L.‐Y., Li, D.‐H. et al. (2016). Characterization of a biosurfactant‐producing strain Rhodococcus sp. hl‐6. Rom. Biotechnol. Lett. 21 (4): 11650–11659.
28 28 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactants by Pseudomonas aeruginosa RS29 on glycerol. J. Basic Microbiol. 52: 446–457.
29 29 Sarma, H. and Prasad, M.N.V. (2015). Plant‐microbe association‐assisted removal of heavy metals and degradation of polycyclic aromatic hydrocarbons. In: In: S Mukherjee (ed.), Petroleum Geosciences: Indian Contexts, Switzerland, 219–Switzerland, 236. Springer International Publishing https://doi.org/10.1007/978‐3‐319‐03119‐4_10. ISBN: 978‐3‐319‐03118‐7.
30 30 Cameotra, S.S. and Singh, P. (2008). Bioremediation of oil sludge using crude biosurfactants. Int. Biodeter. Biodegr. 62: 274–280.
31 31 Perfumo, A., Banat, I.M., Canganella, F., and Marchant, R. (2006). Rhamnolipid production by a novel hydrocarbon‐degrading Pseudomonas aeruginosa AP02‐1. Appl. Microbiol. Biotechnol. 72: 132–138.
32 32 Ma, Z., Liu, J., Dick, R.P. et al. (2018). Rhamnolipid influences biosorption and biodegradation of Phenanthrene by Phenanthrene‐ degrading strain Pseudomonas sp. pH6. Environ. Pollut. 240: 359–367.
33 33 Chen, W., Wilkes, G., Khan, I.U. et al. (2018). Aquatic bacterial communities associated with land use and environmental factors in agricultural landscapes using a metabarcoding approach. Front. Microbiol. 9: 2301.
34 34 Nisenbaum, M., Corti‐Monzon, G., Villegas‐Plazas, M. et al. (2020). Enrichment and key features of a robust and consistent indigenous marine‐cognate microbial consortium growing on oily bilge wastewaters. Biodegradation https://doi.org/10.1007/s10532‐020‐09896.
35 35 De Silva Araujo, S.C., Silva‐Portela, R.C.B., de Lima, D.C. et al. (2020). MBSP1: A biosurfactants protein derived from a metagenomic library with activity in oil degradation. Sci. Rep. 10: 1340.
36 36 Vigor, S., Joessar, M., Soares‐Castro, P. et al. (2020). Microbial metabolic potential of phenol degradation in wastewater treatment plant of crude oil refinery: Analysis of metagenomes and characterization of isolates. Microorganisms 8: 652.
37 37 Leite, G.G.F., Figueirora, J.V., Almedia, T.C.M. et al. (2016). Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Am. Inst. Chem. Eng. 32: 262–270.
38 38 Qinglong, L., Tang, J., Bai, Z. et al. (2015). Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang oilfield, China. Sci. Rep. 5: 11068.
39 39 Sachdev, D.P. and Cameotra, S.S. (2013). Biosurfactants in agriculture, mini‐review. Appl. Microbiol. Biotechnol. 97: 1005–1016.
40 40 Kebbouche‐Gana, S., Gana, M.L., Ferrioune, I. et al. (2013). Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17: 981–993.
41 41 Rizzo, C., Michaud, L., Hörmann, B. et al. (2013). Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar. Pollut. Bull. 70: 125–133.
42 42 Handelsman, J., Rondon, M.R., Brady, S.F. et al. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem.