Biosurfactants for a Sustainable Future. Группа авторов
Читать онлайн книгу.J. Ind. Eng. Chem. 55: 40–49.
16 16 Cavalcanti, M.H.C., Magalhaes, V.M., Farias, C.B.B. et al. (2020). Maximization of biosurfactant production by Bacillus invictae using agroindustrial residues for application in the removal of hydrophobic pollutants. Chem. Eng. Trans. 79: 55–60.
17 17 Go, A.W., Conag, A.T., Igdon, R.M.B. et al. (2019). Potentials of agricultural and agro‐industrial crop residues for the displacement of fossil fuels: A Philippine context. Energ. Strat. Rev. 23: 100–113.
18 18 Aguiar, G.P.S., Limberger, G.M., and Silveira, E.L. (2014). Alternativas tecnológicas para o aproveitamento de resíduos provenientes da industrialização de pescados. Rev. Eletrônica Interdiscip. 1 (11): 229–225.
19 19 Jørgensen, T.R., Nitsche, B.M., Lamers, G.E. et al. (2010). Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl. Environ. Microbiol. 76 (16): 5344–5355.
20 20 Karnwal, A. (2018). Use of bio‐chemical surfactant producing endophytic bacteria isolated from rice root for heavy metal bioremediation. Pertanika J. Trop. Agric. Sci. 41 (2): 699–713.
21 21 Kaur, H.P., Prasad, B., and Kaur, S. (2015). A review on application of biosurfactants produced from unconventional inexpensive wastes in food and agriculture industry. World J. Pharm. Res. 4 (8): 827–842.
22 22 Kertesz, M.A. and Thai, M. (2018). Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl. Microbiol. Biotechnol. 102 (4): 1639–1650.
23 23 Lima, F.A., Santos, O.S., Pomella, A.W.V. et al. (2020). Culture medium evaluation using low‐cost substrate for biosurfactants lipopeptides production by Bacillus amyloliquefaciens in pilot bioreactor. J. Surfactant Deterg. 23 (1): 91–98.
24 24 Satpute, S.K., Bhuyan, S.S., Pardesi, K.R. et al. (2010). Molecular genetics of biosurfactant synthesis in microorganisms. Adv. Exp. Med. Biol. 672: 14–41.
25 25 Kiran, G.S., Ninawe, A.S., Lipton, A.N. et al. (2016). Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit. Rev. Biotechnol. 36: 399–415.
26 26 Maheshwari, D.K. (2012). Bacteria in Agrobiology: Stress Management. Heidelberg, New York: Springer.
27 27 Schiano, C.A., Bellows, L.E., and Lathem, W.W. (2010). The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect. Immun. 78: 2034–2044.
28 28 Whang, L.M., Liu, P.W., Ma, C.C., and Cheng, S.S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel‐contaminated water and soil. J. Hazard. Mater. 151: 155–163.
29 29 Karnwal, A., Bhardwaj, V., Dohroo, A. et al. (2018). Effect of microbial surfactants on heavy metal polluted wastewater. Pollut. Res. 37: 39–46.
30 30 Mishra, S. and Singh, S.N. (2012). Microbial degradation of n‐hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresour. Technol. 111: 148–154.
31 31 Husain, D.R., Goutx, M., Bezac, C. et al. (1997). Morphological adaptation of Pseudomonas nautica strain 617 to growth on eicosane and modes of eicosane uptake. Lett. Appl. Microbiol. 24 (1): 55–58.
32 32 Das, P., Mukherjee, S., Sivapathasekaran, C., and Sen, R. (2010). Microbial surfactants of marine origin: Potentials and prospects. In: Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672 (ed. R. Sen), 88–101. New York, NY: Springer.
33 33 Zhang, J., Lin, X.G., Liu, W.W., and Yin, R. (2012). Response of soil microbial community to the bioremediation of soil contaminated with PAHs. Huan Jing Ke Xue 33: 2825–2831.
34 34 Cazals, F., Huguenot, D., Crampon, M. et al. (2020). Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. Sci. Total Environ. 709: 136143.
35 35 Satyanarayana, T., Johri, B.N., and Prakash, A. (2012). Microorganisms in Sustainable Agriculture and Biotechnology. New York: Springer, Dordrecht.
36 36 de Almeida Couto, C.R., Alvarez, V.M., Marques, J.M. et al. (2015). Exploiting the aerobic endospore‐forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiol. 15: 240.
37 37 Silva, M.A., Silva, A.F., Rufino, R.D. et al. (2017). Production of biosurfactants by Pseudomonas species for application in the petroleum industry. Water Environ. Res. 89: 117–126.
38 38 Nguyen, T.T., Quyen, T.D., and Le, H.T. (2013). Cloning and enhancing production of a detergent‐and organic‐solvent‐resistant nattokinase from Bacillus subtilis VTCC‐DVN‐12‐01 by using an eight‐protease‐gene‐deficient Bacillus subtilis WB800. Microb. Cell Fact. 12 (1): 79.
39 39 Jenneman, G.E., McInerney, M.J., Knapp, R.M., Clark, J.B., Feero, J.M., Revus, D.E. and Menzie, D.E., (1983). Halotolerant, biosurfactant‐producing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. (United States), 24(CONF‐8208164‐).
40 40 Almeida, P.F.D., Moreira, R.S., Almeida, R.C.D.C. et al. (2004). Selection and application of microorganisms to improve oil recovery. Eng. Life Sci. 4 (4): 319–325.
41 41 Horowitz, S. and Griffin, W.M. (1991). Structural analysis of Bacillus licheniformis 86 surfactant. J. Ind. Microbiol. 7 (1): 45–52.
42 42 Coronel‐Leon, J., Pinazo, A., Perez, L. et al. (2017). Lichenysin‐geminal amino acid‐based surfactants: Synergistic action of an unconventional antimicrobial mixture. Colloids Surf. B Biointerfaces 149: 38–47.
43 43 Makkar, R.S. and Cameotra, S.S. (1997). Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc. 74 (7): 887–889.
44 44 Abouseoud, M., Maachi, R., Amrane, A. et al. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223 (1–3): 143–151.
45 45 Mohanram, R., Jagtap, C., and Kumar, P. (2016). Isolation, screening, and characterization of surface‐active agent‐producing, oil‐degrading marine bacteria of Mumbai Harbor. Mar. Pollut. Bull. 105: 131–138.
46 46 Khan, A.H.A., Tanveer, S., Alia, S. et al. (2017). Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation. Ecol. Eng. 104: 158–164.
47 47 Choi, J.W., Choi, H.G., and Lee, W.H. (1996). Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG‐1. J. Biotechnol. 45 (3): 217–225.
48 48 Hassanshahian, M., Emtiazi, G., and Cappello, S. (2012). Isolation and characterization of crude‐oil‐degrading bacteria from the Persian Gulf and the Caspian Sea. Mar. Pollut. Bull. 64: 7–12.
49 49 Peng, F., Liu, Z., Wang, L., and Shao, Z. (2007). An oil‐degrading bacterium: Rhodococcus erythropolis strain 3C‐9 and its biosurfactants. J. Appl. Microbiol. 102: 1603–1611.
50 50 Wojciechowski, K., Orczyk, M., Gutberlet, T., and Geue, T. (2016). Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers. Biochim. Biophys. Acta 1858: 363–373.
51 51 Ma, T., Li, G., Li, J. et al. (2006). Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol. Lett. 28: 1095–1100.
52 52 Mishra, S., Singh, S.N., and Pande, V. (2014). Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour. Technol. 164: 299–308.
53 53 Miao, S., Dashtbozorg, S.S., Callow, N.V., and Ju, L.K. (2015). Rhamnolipids as platform molecules for production of potential anti‐zoospore agrochemicals. J. Agric. Food Chem. 63: 3367–3376.
54 54 Mouillon, J.M. and Persson, B.L. (2006). New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res. 6 (2): 171–176.
55 55 Rivera, O.M.P., Moldes, A.B., Torrado, A.M., and Domínguez, J.M. (2007). Lactic acid and biosurfactants