Естествознание. Базовый уровень. 11 класс. В. И. Сивоглазов
Читать онлайн книгу.кирпича, температура одного из которых равна T1, а второго – T2, причём T1 > T2, т. е. первый кирпич горячее второго. Приведём их в тепловой контакт, т. е. позволим им свободно обмениваться между собой теплотой. При этом система в целом останется изолированной. Если внешняя теплота в систему не поступает и своей теплоты система не теряет, то суммарное количество теплоты в ней остаётся постоянным. Что же будет происходить в такой системе? Очевидно, что через некоторое время горячий кирпич отдаст холодному какое-то количество теплоты ∆Q, а холодный ровно столько же её получит. Поскольку горячий кирпич теплоту потеряет, мы будем считать эту теплоту отрицательной (-∆Q), а теплоту, полученную холодным кирпичом, – положительной. Посмотрим, как изменится значение энтропии при такой теплопередаче. Горячий кирпич отдал теплоту в количестве ∆Q. Следовательно, его энтропия уменьшилась на величину ∆Q/T1. А холодный кирпич получил то же количество теплоты, и его энтропия увеличилась на величину ∆Q/T2. Но T1 > T2, и, следовательно, уменьшение энтропии горячего кирпича по абсолютной величине оказывается меньше, чем увеличение энтропии холодного кирпича. Получается, что естественный процесс передачи теплоты от более нагретого тела менее нагретому сопровождается ростом энтропии. До тех пор пока горячее тело будет остывать, а холодное за его счёт нагреваться, энтропия изолированной системы будет расти. В конце концов, температуры обоих тел сравняются, и процесс теплопередачи прекратится. В этом случае ∆Q = 0 и ∆S = 0, т. е. количество энтропии будет оставаться постоянным. Поскольку передача теплоты от менее нагретого тела более нагретому невозможна, изменение энтропии никогда не может быть отрицательным. Следовательно, ∆S ≥ 0, т. е. энтропия в изолированных системах никогда не уменьшается, что также можно считать одной из формулировок второго начала термодинамики. Это же положение можно выразить и так: «Все природные процессы сопровождаются увеличением энтропии».
В предыдущем параграфе мы говорили о том, что все самопроизвольные процессы сопровождаются выравниванием температуры в различных частях системы и переходом части свободной энергии в связанную энергию. Теперь мы видим, что этот процесс неизбежно сопровождается возрастанием некой физической величины, которую называют энтропией. Отсюда можно сделать вывод, что именно энтропия является мерой связанной, не способной совершать работу энергии. Математически это утверждение выражают уравнением Гиббса – Гельмгольца:
U = F + TS,
где U – полная внутренняя энергия, которой обладает система, F – свободная энергия этой системы, а TS – её связанная энергия, которая, как мы видим, равна произведению абсолютной температуры системы на её энтропию.
Это уравнение объединяет первое и второе начала термодинамики. Из него следует, что вся энергия, которой обладает система, не может быть превращена в работу. Работу можно совершать только за счёт затраты свободной энергии, а она, как следует из уравнения Гиббса – Гельмгольца, меньше, чем полная энергия системы:
F = U – TS.
Чем