100 великих парадоксов. Рудольф Баландин
Читать онлайн книгу.зоны. Там, где речь идёт о большом количестве частиц (объектов), одна или две, три теряются в общей массе. Есть смысл выделять некоторое количество (приблизительно), зависящее от общего числа, добавление которого существенно повлияет на то, возникнет ли куча.
Продолжим обсуждение в следующем очерке.
Лысый
По-видимому, Евбулиду принадлежит «парадокс лысого» – негативный вариант «парадокса кучи»: «Если волосы с головы выпадают по одному, с какого момента человек становится лысым?»
У людей в среднем приблизительно 100 000 волос на голове. Если человек ежедневно будет терять по волосинке, а новые волосы не вырастут, когда он полысеет?
Бесспорный ответ невозможен по трём причинам.
• Нет точного определения, кого следует считать лысым. Если иметь в виду того, у кого мало волос на голове, то надо определить, какое количество волос предполагает слово «мало».
• Лысины бывают разными. Когда у человека, например, лысая верхняя часть черепа или проплешина на затылке, в остальном у него может быть больше волос, чем у того, на голове которого волосы распространены равномерно, но редко.
Когда лысина становится лысиной?
• Нет критерия, по которому можно точно сказать, что человек, у которого волос на голове меньше данного числа, является лысым.
Учитывая всё это, хочется сразу сделать вывод, что задача неразрешима. Ситуация парадоксальная. Человек с густой шевелюрой утратил один волос. Шевелюра осталась. На другой день у него стало ещё на один волос меньше, хотя шевелюра сохранилась. Так можно продолжать изо дня в день. Но ведь когда-то должен наступить момент появления лысины?
Выходит, если сразу выпадет клок волос, лысина образуется, а если будет выпадать по волоску в день, она не появится? Или, точнее, она появится неизвестно в какой день.
Можно прийти к соглашению, что следует считать лысиной. От этого ничего принципиально не изменится, ибо точного числа волос на голове у лысого человека назвать невозможно. Критерий утраты по одной волосинке в день не соответствует характеру задачи, тем более не вполне определённо сформулированной. Складывается впечатление, что именно эту суть парадоксов «кучи» и «лысого» имел в виду древнегреческий философ.
Избыточная точность в некоторых случаях не даёт возможности корректно решить проблему. Требуется хотя бы приблизительно указать те пределы, в которых шевелюра превращается в лысину, а группа песчинок становится кучей.
Для определения переходной зоны, когда возникает куча, нужен критерий, соответствующий размеру объекта. Даже добавление щепоток песка затрудняет определить момент, когда возникнет куча песка. Если добавлять песок горстями, переходная зона станет более определённой.
То же относится к парадоксу «лысый». Если счёт идёт на волосинки, нет никакой возможности определить не только день, но даже неделю, когда на месте шевелюры появится лысина.
По