The Explosion of Life Forms. Группа авторов
Читать онлайн книгу.H. (1972). L’Organisation biologique et la théorie de l’information. Hermann, Paris.
Awramik, S.M. (1994). The history and significance of stromatolites. In Early Organic Evolution: Implications for Mineral and Energy Resources, Schidlowski, M. et al. (eds). Springer, Berlin, 435–449.
Bernard, C. (1878). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Librairie Baillière et fils, Paris.
Briers, Y., Walde, P., Schuppler, M., Loessner, M.J. (2012). How did bacterial ancestors reproduce? Lessons from L-form cells and giant lipid vesicles. Bioessays, 34, 1078–1084.
Bungenberg de Jong, H.G. (1936). La coacervation. Les coacervats et leur importance en biologie. Hermann & cie, Paris.
Callahan, M.P., Smith, K.E., Cleaves II, H.J., Ruzicka, J., Stern, J.C., Glavin, D.P., House, C.H., Dworkin, J.P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. PNAS, USA, 108(34), 13995–13998.
Chen, I.A., Szostak, J.W. (2004). Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. PNAS, USA, 101(21), 7965–7970.
Damer, B., Deamer, D. (2015). Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life (Basel), 5(1), 872–887.
Deamer, D.W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature, 317, 792–794.
Deamer, D.W. (1997). The first living systems: a bioenergetic perspective. Microbiol. Mol. Biol. Rev., 61, 230–261.
Deamer, D.W., Barchfeld, G.L. (1982). Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions. J. Mol. Evol., 18, 203–206.
Deamer, D.W., Pashley, R.M. (1989). Amphiphilic components of carbonaceous meteorites. Orig. Life Evol. Biosph., 19, 21–33.
De Guzman, V., Vercoutere, W., Shenasa, H., Deamer, D. (2014). Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J. Mol. Evol., 78(5), 251–262.
Dworkin, J.P., Deamer, D.W., Sandford, S.A., Allamandola, L.J. (2001). Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometaryices. Proc. Natl. Acad. Sci. USA, 98, 815–819.
Engelhart, A.E., Adamala, K.P., Szostak, J.W. (2016). A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem., 8(5), 448–53.
Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biol, 3, 120–143.
Fox, S.W. (1988). The Emergence of Life. Basic Books Publishers, New York.
Gérard, E., De Goeyse, S., Hugoni, M., Agogué, H., Richard, L., Milesi, V., Guyot, F., Lecourt, L., Borensztajn, S., Joseph, M.B., Leclerc, T., Sarazin, G., Jézéquel, D., Leboulanger, C., Ader, M.K. (2018). Role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Frontiers in Microbiology, 9.
Haldane, J.B.S. (1929). The origin of life. The Rationalist Annual, 3–10.
Hamada, S., Yancey, K.G., Pardo, Y., Gan, M., Vanatta, M., An, D., Hu, Y., Derrien, T.L., Ruiz, R., Liu, P., Sabin, J., Luo, D. (2019). Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Science Robotics, 4(29).
Haudin, F., Brau, F., De Wit, A. (2018). La chimie génératrice de forme : végétation métallique et jardins chimiques [Online]. Revue Arts et Sciences V2 N1. Available at: https://www.openscience.fr/Numero.
Jimbo, T., Sakuma, Y., Urakami, N., Ziherl, P., Imai, M. (2016). Role of inverse-cone-shape lipids in temperature-controlled self-reproduction of binary vesicles. Biophysical Journal, 110, 1551–1562.
Leduc, S. (1912). La biologie synthétique. Poinat, Paris.
Lepot, K., Williford, K.H., Philippot, P., Thomazo, C., Ushikubo, T., Kitajima, K., Mostefaoui, S., Valley, J.W. (2019). Extreme 13C depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochimica et Cosmochimica Acta, 244, 522–547.
Locey, K.J., Lennon, J.T. (2016). Scaling laws predict global microbial diversity. PNAS, 113(21), 5970–5975.
Luisi, P.L. (2002). Toward the engineering of minimal living cells. The Anatomical Record, 268, 208–214.
Luisi, P.L. (2016). The Emergence of Life. Cambridge University Press, Cambridge.
Mansy, S.S., Szostak, J.W. (2008). Thermostability of model protocell membranes. PNAS, USA, 105(36), 13351–13355.
Misuraca, L., Natali, F., Da Silva, L., Peters, J., Demé, B., Ollivier, J., Seydel, T., Laux- Lesourd, V., Haertlein, M., Zaccai, G., Deamer, D., Maurel, M.C. (2017). Mobility of a mononucleotide within a lipid matrix: A neutron scattering study. Life (Basel), 7(1).
Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biol., 9(8).
Nakatani, Y., Ribeiro, N., Streiff, S., Gotoh, M., Pozzi, G., Désaubry, L., Milon, A. (2014). Search for the most ‘primitive’ membranes and their reinforcers: a review of the polyprenyl phosphates theory. Orig. Life Evol. Biosph., 44(3), 197–208.
Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Chivas, A.R. (2016). Nature, 537, 535–538.
Oparin, A.I. (1938). The Origin of Life. MacMillan, New York.
Peterlin, P., Arrigler, V., Kogej, K., Svetina, S., Walde, P. (2009). Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids, 159(2), 67–76.
Prigogine, I. (1947). Étude thermodynamique des phénomènes irréversibles. Dunod, Paris.
Rajamani, S., Vlassov, A., Benner, S., Coombs, A., Olasagasti, F., Deamer, D. (2008). Lipid- assisted synthesis of RNA-like polymers from mononucleotides. Orig. Life Evol. Biosph., 38, 57–74.
Schopf, J.W. (1993). Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science, 260(5108), 640–646.
Séris, J.-P. (1994). La technique. PUF, Paris.
Singer, E. (2007). Craig Venter’s genome. MIT Technology Review, September 4.
Thomas, P. (2011). Les fers rubanés (Banded Iron Formation) de l’Archéen de Barberton, groupe de Fig Tree (-3,26 à -3,22 Ga), Afrique du Sud [Online]. Available at: https://planet-terre.ens-lyon.fr/image-de-la-semaine/ Img364–2011-10–10.xml.
Thomas, P. (2016). L’origine de la vie vue par un géologue qui aime l’astronomie [Online]. Available at: https://planet-terre.ens-lyon.fr/article/origine-vie-2016.xml.
Toppozini, L., Dies, H., Deamer, D.W., Rheinstädter, M.C. (2013). Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: Insights into assembly of nucleic acid for primitive life. PLoS ONE, 8(5).
Varela, F.G., Maturana, F.H., Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. BioSystems, 5(4), 187–196.
Von Foerster, H. (1961). A predictive model for self-organizing systems. Cybernetica, 3(4), 258–300.
Walde, P., Goto, A., Monnard, P.-A., Wessicken, M., Luisi, P.L. (1994a).