Big Ideas. Das Ökologie-Buch. John Farndon
Читать онлайн книгу.Zuckern und Phosphaten. Sie sind durch Nukleotidbasenpaare verbunden: Adenin und Thymin oder Guanin und Cytosin.
Da die DNA stets im Zellkern bleibt, kopiert ein ähnliches Molekül, die Boten-RNA (mRNA, engl.: messenger RNA), einzelne DNA-Abschnitte und bringt sie zu den Zellorganellen, in denen neue Proteine hergestellt werden. RNA ist chemisch verwandt mit DNA, enthält aber statt der Base Thymin (T) die Base Uracil (U). Diese ist weniger stabil, dafür wird weniger Energie für ihre Produktion benötigt. Für langlebige Lebewesen ist die stabile DNA sinnvoll, RNA bildet daher das Erbgut einiger Viren, bei denen die Stabilität weniger Vorteile mit sich bringt.
DNA findet sich in allen Organismen, von Amöben über Insekten bis hin zu Bäumen, Tieren und Menschen. Die Sequenz der Basenpaare variiert und aus den Unterschieden können Genetiker die Verwandtschaft von Arten erkennen.
Gute und schlechte Fehler
DNA ist ein stabiles Molekül, doch manchmal kommt es zu Fehlern, die man Mutationen nennt. Dabei kann in der Basensequenz eine der Nukleinbasen A, C, G und T falsch oder doppelt vorkommen oder fehlen. Mutationen können spontan durch Kopierfehler auftreten oder durch äußere Faktoren wie Radioaktivität oder krebserregende Chemikalien hervorgerufen werden. Einige Mutationen haben keine Auswirkungen; andere können hingegen beeinflussen, welche Proteine das Gen produziert, oder die Funktion des Gens behindern. Dies kann Probleme für den ganzen Organismus verursachen. Beispiele für solche Störungen sind Mukoviszidose und Sichelzellenanämie.
Mutierte Blutkörperchen sind Zeichen der Erbkrankheit Sichelzellenanämie. Sie tritt auf, wenn beide Eltern das defekte Gen tragen, verursacht Schmerzen und erhöht das Infektionsrisiko.
Zwar sorgen viele Mutationen für Nachteile, doch gelegentlich kann ein Individuum von ihnen profitieren und dadurch in seiner Umwelt besser überleben als seine Artgenossen. Solche Veränderungen können dann durch natürliche Selektion weitervererbt werden. Über viele Generationen hinweg sind Mutationen ein Mechanismus, der Vielfalt und damit Selektion und Evolution ermöglicht.
Das Humangenom
Am 14.4.2003 vollendeten Forscher die große Aufgabe der Kartierung (Sequenzierung) des menschlichen Genoms. Sie hatten es geschafft, die Position aller Nukleinbasen in der Kette aus etwa 3 Mio. Basenpaaren, die circa 30 000 Gene enthält, zu bestimmen. Damit können Genetiker neue Gene und ihre Rolle im Körper identifizieren. Mit diesem Wissen lässt sich auch feststellen, ob ein Individuum ein defektes Gen geerbt hat. So kann man durch künstliche Befruchtung entstandene Embryos vor der Implantation in die Gebärmutter auf bekannte Erbkrankheiten untersuchen. Im März 2018 war bereits das Genom von etwa 15 000 Organismen kartiert. Diese Daten helfen, die evolutionäre Verwandtschaft von Arten zu klären.
Die Entdeckung, wie sich die DNA zusammensetzt und wie sie strukturiert ist, hat die Genetik revolutioniert. Interessant ist, dass nur etwa 2 % des gesamten Humangenoms Abschnitte ausmachen, die Proteine codieren. Die Funktionen der übrigen 98 % sind noch nicht gut erforscht, aber man nimmt an, dass zumindest einige dieser Abschnitte eine Rolle bei der Genexpression (der Art, wie Geninformationen sichtbar werden) und bei der Genaktivierung spielen. Auf zukünftige Genetiker warten noch viele Entdeckungen.
»Durch Gentechnik wird es uns möglich sein, … die menschliche Rasse zu verbessern.«
Stephen Hawking The Telegraph, 18.10.2001
Gentechnik
Ihr Wissen über die Struktur der DNA hat es Wissenschaftlern ermöglicht, das Erbmaterial in den Zellen zu modifizieren. So kann man ein Gen aus einem Organismus (dem »Spender«) ausschneiden und in die DNA eines anderen einsetzen. Als das in den 1970er-Jahren erstmals versucht wurde, erwies es sich als schwierig und zeitaufwendig. Doch technische Fortschritte, vor allem Methoden, die auf dem zelleigenen DNA-Editiermechanismus beruhen, dem sogenannten CRISPR/Cas-System, haben vieles sehr vereinfacht und schneller gemacht. Mit dieser »Gen-Schere« lässt sich theoretisch jedes Gen beliebig in DNA einsetzen. Dazu wurden einige Versuche unternommen, etwa das Einfügen des Gens für Spinnenseide bei Ziegen, sodass deren Milch reich an Seidenproteinen ist. Auch Hormone oder Impfstoffe können so einfach hergestellt werden.
Bei der Gentherapie setzt ein modifizierter »Vektor« (Transportvehikel, oft ein Virus) das Gen in die DNA ein, um defekte oder unerwünschte Gene zu ersetzen.
Ein Forscher analysiert DNA-Proben. Gentechnische Methoden sind in der Medizin Standard, in der Forensik ist DNA-Profiling essenziell.
Genetisch veränderte Lebensmittel
Landwirtschaftliche Pflanzen werden genetisch verändert, um bestimmte Eigenschaften zu erzielen; man nennt sie dann genetisch modifizierte Organismen (GMOs). Dabei wird die DNA modifiziert, etwa damit eine Pflanze mehr Nährstoffe oder einen Giftstoff als Schutz vor bestimmten Insekten produziert. Ebenso kann erreicht werden, dass Pflanzen gegen bestimmte Herbizide unempfindlich werden, sodass eine Chemikalie auf dem Feld nur das Unkraut, aber nicht die Nutzpflanze tötet.
Einige Ökologen sehen Risiken darin, dass unmodifizierte Pflanzen durch GMOs beeinflusst werden könnten. Zudem seien die langfristigen Auswirkungen solcher Lebensmittel nicht genau bekannt. Eine weitere Sorge: Große agrochemische Konzerne könnten die Lebensmittelversorgung der Welt zum Nachteil ärmerer Nationen kontrollieren, indem sie GMOs patentieren.
Neue Reissorten werden durch genetische Modifikationen entwickelt. So lässt sich zum Beispiel der Nährwert oder die Resistenz gegen Krankheiten erhöhen.
DNA-Barcoding
Die Idee des DNA-Barcoding kam erstmals 2003 auf, als ein Team an der Universität Guelph (Kanada) überlegte, dass eine Artenbestimmung durch die Analyse gemeinsamer DNA-Abschnitte möglich sein müsste. Die Forscher um Dr. Paul Hebert wählten einen Bereich mit 648 Basenpaaren im Gen der Untereinheit 1 des Enzyms Cytochrom-c-Oxidase (»CO1« oder »cox1«). Diese Region lässt sich schnell analysieren, ist aber lang genug für Variationen zwischen und innerhalb von Tierarten. Für andere Lebensformen werden andere Abschnitte genutzt.
Für das Barcoding katalogisiert man zunächst Proben bekannter Arten. Ihre DNA wird sequenziert, das heißt die Reihenfolge (Sequenz) der Basenpaare bestimmt. Diese Sequenzen werden in Datenbanken gespeichert. Wird eine unbekannte Art sequenziert, kann der Computer sie mit bekannten Sequenzen vergleichen und so den Verwandtschaftsgrad ermitteln. Die Methode hilft bei der Taxonomie, also bei der Klassifikation von Tieren und Pflanzen.
GENE SIND EGOISTISCHE MOLEKÜLE
DAS EGOISTISCHE GEN
IM KONTEXT
SCHLÜSSELFIGUR
Richard Dawkins (*1941)
FRÜHER
1963 Der britische Biologe William Donald Hamilton schreibt in The Evolution of Altruistic Behaviour über »egoistische Interessen« von Genen.
1966 Der US-amerikanische Biologe George C. Williams sieht in dem Buch Adaptation and Natural Selection den Altruismus als eine Folge der Selektion auf