Роман с Data Science. Как монетизировать большие данные. Роман Зыков

Читать онлайн книгу.

Роман с Data Science. Как монетизировать большие данные - Роман Зыков


Скачать книгу
ищут ошибку. И скорее всего, «найдут». Видите ли, все метрики содержат ошибку. Вспомните лабораторные работы по физике в школе или институте, сколько мы мучились и считали погрешности. Системные, случайные… Сколько времени мы тогда тратили на то, чтобы подогнать результат под нужную закономерность?

      В бизнесе и науке так делать нельзя, особенно если вы хотите быть хорошим аналитиком и не пользоваться вышеупомянутыми «сравнительно честными способами» повернуть цифры туда, куда нужно. Сейчас погрешность измерений веб-аналитики (системы измеряют посещаемость веб-сайтов) составляет около 5 %. Когда я еще работал в Ozon.ru, погрешность всей аналитической системы тоже была около 5 % (расхождение с данными бухгалтерии). У меня был серьезный случай – я обнаружил ошибку в коммерческой системе веб-аналитики Omniture Sitecatalyst (ныне Adobe Analytics): она не считала пользователей с браузером Opera. В результате погрешность измерений была очень большой – около 10 % всех совершенных заказов система, за которую мы платили более 100 тысяч долларов в год, безнадежно потеряла. С такой погрешностью ей тяжело было доверять – но, к счастью, когда я обнаружил ошибку системы и сообщил о ней в Omniture, их разработчики ее устранили.

      При работе с погрешностями я вывел правило, которое называю Правилом штангенциркуля. Есть такой инструмент для измерения размеров деталей с точностью до десятых долей миллиметра. Но такая точность не нужна при измерении, например, размеров кирпича – это уже за пределами здравого смысла, достаточно линейки. Правило штангенциркуля я бы сформулировал так:

      Погрешность есть в любых измерениях, этот факт нужно принять, а саму погрешность – зафиксировать и не считать ее ошибкой (в одной из следующих глав я расскажу, как ее мониторить).

      Задача аналитика – в разумной мере уменьшить погрешность цифр, объяснить ее и принять как данность. Как правило, в погоне за сверхточностью система усложняется, становится тяжелой с точки зрения вычислений, а значит, и более дорогой – ведь цена изменений становится выше.

      Принцип Парето

      Итальянский экономист и социолог Вильфредо Парето в 1897 году, исследуя структуру доходов итальянских домохозяйств, выяснил, что 80 % процентов всех их доходов приходится на 20 % из них.

      Универсальный принцип, названный в его честь, был предложен в 1951 году, и сейчас принцип Парето звучит так: «20 % усилий дают 80 % результата».

      Опираясь на свой опыт, я бы так сформулировал его на языке данных:

      • 20 % данных дают 80 % информации (data science);

      • 20 % фич или переменных дают 80 % точности модели (machine learning);

      • 20 % из числа успешных гипотез дают 80 % совокупного положительного эффекта (тестирование гипотез).

      Я почти 20 лет работаю с данными и каждый день убеждаюсь в том, что эта закономерность работает. Это правило лентяя? Только на первый взгляд. Ведь чтобы понять, какие именно 20 % позволят добиться результата, нужно потратить 100 % усилий. Стив Джобс в интервью Business Week в 98-м году сказал: «Простое сделать труднее, чем сложное:


Скачать книгу