Nano-Technological Intervention in Agricultural Productivity. Javid A. Parray
Читать онлайн книгу.of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 32: 577–584. https://doi.org/10.1111/j.1365-3040.2009.01952.x.
71 71 Yang, F., Liu, C., Gao, F. et al. (2007). The improvement of spinach growth by nano‐anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119: 77–88. https://doi.org/10.1007/s12011-007-0046-4.
72 72 Song, G., Gao, Y., Wu, H. et al. (2012). Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 31: 2147–2152. https://doi.org/10.1002/etc.1933.
73 73 Mahajan, P., Dhoke, S.K., and Khanna, A.S. (2011). Effect of nano‐ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. 7: 696535. https://doi.org/10.1155/2011/696535.
74 74 Lee, W.M., An, Y.J., Yoon, H., and Kweon, H.S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environ. Toxicol. Chem. 27: 1915–1921. https://doi.org/10.1897/07-481.1.
75 75 Stampoulis, D., Sinha, S.K., and White, J.C. (2009). Assay‐dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43: 9473–9479. https://doi.org/10.1021/es901695c.
76 76 Shah, V. and Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut. 197: 143–148. https://doi.org/10.1007/s11270-008-9797-6.
77 77 Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150: 243–250. https://doi.org/10.1016/j.envpol.2007.01.016.
78 78 Khodakovskaya, M.V., Kim, B., Kim, J.N. et al. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9: 115–123. https://doi.org/10.1002/smll.201201225.
79 79 Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10 (6): 713–717.
80 80 Lee, W.‐M., Kwak, J.I., and An, Y.‐J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86: 491–499. https://doi.org/10.1016/j.chemosphere.
81 81 Jośko, I. and Oleszczuk, P. (2013). Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92: 91–99. https://doi.org/10.1016/j.chemosphere.2013.02.048.
82 82 Dimkpa, C.O., McLean, J.E., Britt, D.W., and Anderson, A.J. (2012). CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 6: 635–642. https://doi.org/10.3109/17435390.2011.598246.
83 83 Hänsch, M. and Emmerling, C. (2010). Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant Nutr. Soil Sci. 173: 554–558. https://doi.org/10.1002/jpln.200900358.
84 84 Colman, B.P., Arnaout, C.L., Anciaux, S. et al. (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8: e57189. https://doi.org/10.1371/journal.pone.0057189.
85 85 Vittori Antisari, L., Carbone, S., Gatti, A. et al. (2013). Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol. Biochem. 60: 87–94. https://doi.org/10.1016/j.soilbio.2013.01.016.
86 86 Ge, Y., Priester, J.H., Van De Werfhorst, L.C. et al. (2013). Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 47: 14411–14417. https://doi.org/10.1021/es403385c.
87 87 Kibbey, T. and Strevett, K. (2019). The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221: 703–707. https://doi.org/10.1016/j.chemosphere.2019.01.091.
88 88 Chen, H. and Yada, R. (2011). Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol. 22: 585–594. https://doi.org/10.1002/ps.1732.
89 89 Wirth, S.M., Lowry, G.V., and Tilton, R.D. (2012). Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ. Sci. Technol. 46: 12687–12696. https://doi.org/10.1021/es301521p.
90 90 Calder, A.J., Dimkpa, C.O., McLean, J.E. et al. (2012). Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci. Total Environ. 429: 215–222. https://doi.org/10.1016/j.scitotenv.2012.04.049.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.