Biomedical Data Mining for Information Retrieval. Группа авторов

Читать онлайн книгу.

Biomedical Data Mining for Information Retrieval - Группа авторов


Скачать книгу
33. TropI Troponin-I µg/L 34. TropT Troponin-T µg/L 35. Urine Urine Output mL 36. WBC White Blood Cells Count cells/nL

      1.3.4 Mortality Prediction

S. no. Variables Physical units
1. Temperature Celsius
2. Heart Rate bpm
3. Urine Output mL
4. pH [0–14]
5. Respiration Rate bpm
6. GCS (Glassgow Coma Index) [3–15]
7. FiO2 (Fractional Inspired Oxygen) [0–1]
8. PaCo2 (Partial Pressure Carbon dioxide) mmHg
9. MAP (Invasive Mean arterial blood pressure) mmHg
10. SysABP (Invasive Systolic arterial blood pressure) mmHg
11. DiasABP (Invasive Diastolic arterial blood pressure) mmHg
12. NIMAP (Non-invasive mean arterial blood pressure) mmHg
13. NIDiasABP (Non-invasive diastolic arterial blood pressure) mmHg
14. Mechanical ventilation respiration [yes/no]
15. NISysABP (Non-invasive systolic arterial blood pressure) mmHg

      1.3.5 Model Description and Development

      Different models are developed in this chapter to estimate the performance of mortality prediction and comparison between them is also made. The models such as FLANN, Discriminant analysis, Decision Tree, KNN, Naive Bayesian and Support Vector Machine are applied to develop different classifiers. Out of 4,000 records of dataset A 3,000 records are taken as training set and remaining 1,000 records are used for validation or test of the models.

      First of all Factor Analysis (FA) is applied to the selected variables to reduce the features. Factor analysis is one of the feature reduction techniques which is used to reduce the high dimension features to low dimension [31]. The 58 features of the dataset are reduced to 49 using FA. Several steps to of factor analysis are

      1 First normalize the data matrix (Y) by using z-score method.

      2 Calculate the auto correlation of the matrix (R).(1.1)

      3 Calculate the Eigen vectors (U) and Eigen values (l)(1.2)

      4 Rearrange the Eigen vector and Eigen values in descending order

      5 Calculate the factor loading matrix (A) by using(1.3)

      6 Calculate the score matrix (B)(1.4)

      7 Calculate the factor score (F)(1.5)


Скачать книгу