Graph Spectral Image Processing. Gene Cheung
Читать онлайн книгу.References
Anderson Jr. W.N. and Morley, T.D. (1985). Eigenvalues of the Laplacian of a graph. Linear and Multilinear Algebra, 18(2), 141–145.
Barash, D. (2002). Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell., 24(6), 844–847.
Chang, C.-L. and Girod, B. (2007). Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process., 16(5), 1289–1302.
Choudhury, P. and Tumblin, J. (2003). The trilateral filter for high contrast images and meshes. Eurographics Rendering Symposium, 186–196.
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 317–324.
Ding, W., Wu, F., Wu, X., Li, S., Li, H. (2007). Adaptive directional lifting-based wavelet transform for image coding. IEEE Trans. Image Process, 16(2), 416–427.
Durand, F. and Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (TOG), 21, 257–266.
Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (TOG), 27, 67.
Fleishman, S., Drori, I., Cohen-Or, D. (2003). Bilateral mesh denoising. ACM Transactions on Graphics (TOG), 22, 950–953.
Gadde, A., Narang, S.K., Ortega, A. (2013). Bilateral filter: Graph spectral interpretation and extensions. IEEE International Conference on Image Processing, 1222–1226.
Girault, B., Ortega, A., Narayanan, S. (2018). Irregularity-aware graph Fourier transforms. IEEE Transactions on Signal Processing, 66(21), 5746–5761.
Golub, G.H. and Van Loan, C.F. (1996). Matrix Computations, Johns Hopkins University Press, Maryland.
Hammond, D.K., Vandergheynst, P., Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129–150.
Harel, J., Koch, C., Perona, P. (2006). Graph-based visual saliency. Proceedings of the 19th International Conference on Neural Information Processing Systems, 545–552.
He, K., Sun, J., Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–1409.
Hu, W., Cheung, G., Ortega, A., Au, O.C. (2015). Multiresolution graph Fourier transform for compression of piecewise smooth images. IEEE Transactions on Image Processing, 24(1), 419–433.
Itti, L., Koch, C., Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20(11), 1254–1259.
Kim, B.-M. and Rossignac, J. (2005). Geofilter: Geometric selection of mesh filter parameters. Computer Graphics Forum, 24, 295–302.
Leonardi, N. and Van De Ville, D. (2013). Tight wavelet frames on multislice graphs. IEEE Trans. Signal Process., 16(13), 3357–3367.
Lu, K.-S. and Ortega, A. (2019). Fast graph Fourier transforms based on graph symmetry and bipartition. IEEE Trans. Signal Process., 67(18), 4855–4869.
Milanfar, P. (2013b). A tour of modern image filtering. IEEE Signal Processing Magazine, 30(1), 106–128.
Nagao, M. and Matsuyama, T. (1979). Edge preserving smoothing. Computer Graphics and Image Processing, 9(4), 394–407.
Narang, S.K. and Ortega, A. (2012). Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process, 60(6), 2786–2799.
Narang, S.K. and Ortega, A. (2013). Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs. IEEE Transactions on Signal Processing, 61(19), 4673–4685.
Onuki, M., Ono, S., Yamagishi, M., Tanaka, Y. (2016). Graph signal denoising via trilateral filter on graph spectral domain. IEEE Trans. Signal Inf. Process. Netw., 2(2), 137–148.
Phillips, G.M. (2003). Interpolation and Approximation by Polynomials. Springer, New York.
Pomalaza-Raez, C. and McGillem, C. (1984). An adaptative, nonlinear edge-preserving filter. IEEE Trans. Acoust., Speech, Signal Process, 32(3), 571–576.
Sakiyama, A. and Tanaka, Y. (2014). Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process, 62(24), 6425–6437.
Sakiyama, A., Watanabe, K., Tanaka, Y. (2016). Spectral graph wavelets and filter banks with low approximation error. IEEE Trans. Signal Inf. Process. Netw., 2(3), 230–245.
Sakiyama, A., Tanaka, Y., Tanaka, T., Ortega, A. (2019a). Eigendecomposition-free sampling set selection for graph signals. IEEE Trans. Signal Process, 67(10), 2679–2692.
Sakiyama, A., Watanabe, K., Tanaka, Y. (2019b). m-channel critically sampled spectral graph filter banks with symmetric structure. IEEE Signal Processing Letters, 26(5), 665–669.
Sakiyama, A., Watanabe, K., Tanaka, Y., Ortega, A. (2019c). Two-channel critically-sampled graph filter banks with spectral domain sampling. IEEE Trans. Signal Process, 67(6), 1447–1460.
Shuman, D.I., Vandergheynst, P., Frossard, P. (2011). Chebyshev polynomial approximation for distributed signal processing. Proc. DCOSS’11, 1–8.
Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83–98.
Shuman, D.I., Wiesmeyr, C., Holighaus, N., Vandergheynst, P. (2015). Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Trans. Signal Process, 63(16), 4223–4235.
Shuman, D.I., Faraji, M.J., Vandergheynst, P. (2016a). A multiscale pyramid transform for graph signals. IEEE Trans. Signal Process, 64(8), 2119–2134.
Shuman, D.I., Ricaud, B., Vandergheynst, P. (2016b). Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis, 40(2), 260–291.
Strang, G. (1999). The discrete cosine transform. SIAM Rev., 41(1), 135–147.
Strang, G. and Nguyen, T.Q. (1996). Wavelets and Filter Banks. Wellesley-Cambridge, Massachusetts.
Tanaka, Y. (2018). Spectral domain sampling of graph signals. IEEE Trans. Signal Process, 66(14), 3752–3767.
Tanaka, Y. and Eldar, Y.C. (2020). Generalized sampling on graphs with subspace and smoothness priors. IEEE Transactions on Signal Processing, 68, 2272–2286.
Tanaka, Y. and Sakiyama, A. (2014). M-channel oversampled graph filter banks. IEEE Trans. Image Process, 62(14), 3578–3590.
Tanaka, Y., Hasegawa, M., Kato, S., Ikehara, M., Nguyen, T.Q. (2010). Adaptive directional wavelet transform based on directional prefiltering. IEEE Trans. Image Process., 19(4), 934–945.
Tanaka, Y., Eldar, Y.C., Ortega, A., Cheung, G. (2020). Sampling signals on graphs: From theory to applications. IEEE Signal Processing Magazine, 37(6), 14–30.
Taubin, G. (1995). A signal processing approach to fair surface design. Proc. SIGGRAPH’95, 351–358.
Taubin, G., Zhang, T., Golub, G.H. (1996). Optimal surface smoothing as filter design. Proc. ECCV’96, 283–292.
Teke, O. and Vaidyanathan, P.P. (2016). Extending classical multirate signal processing theory to graphs – Part