From bioinformatics to nanotechnology, advances in basic research ultimately drive advances in clinical care. This book provides a comprehensive summary of all current research methodologies for translational and pre-clinical studies in biomechanics and orthopedic trauma surgery. With this roadmap at hand, specialists and trainees will have the tools to conduct high-quality experimental research in any area of musculoskeletal science, with a solid understanding of how the findings can be applied in patient care. Special Features: Utilizes the principles and methodology of modern, evidence-based medicine in pre-clinical musculoskeletal research Offers a comprehensive analysis of in vivo models for studying different components of the musculoskeletal system Demonstrates how principles of structural, functional, and numerical biomechanics can be utilized in well-defined experimental research studies spanning topics from fracture fixation to gait analysis to bone remodeling Covers the role of new macroscopic CT and ultrasound imaging techniques for assessing bone and cartilage function Explores cutting-edge developments in cell culture research, molecular testing, and tissue engineering Provides practical advice, a glossary of key terminology, and hundreds of illustrations to familiarize clinicians with every aspect of designing and interpreting an effective research study With 54 state-of-the-art chapters by orthopedic surgeons, musculoskeletal physicians, biologists, engineers, physicists, and mathematicians, Experimental Research Methods in Orthopedics and Trauma is the authoritative reference on the topic. It is essential for clinicians, basic researchers, and orthopedic surgical trainees who need to understand experimental research methodology, apply its findings, and participate fully in research activities.