Magma Redox Geochemistry. Группа авторов
Читать онлайн книгу.Review, 26, 2. https://doi.org/10.1007/s00159‐018‐0108‐y
54 Lécuyer, C., & Ricard, Y. (1999). Long‐term fluxes and budget of ferric iron: Implications for the redox state of Earth mantle and atmosphere. Earth and Planetary Science Letters, 165, 197–211. https://doi.org/10.1016/S0012‐821X(98)00267‐2
55 Li, Z. X. A., & Lee, C. T. A. (2004). The constancy of upper mantle fO(2) through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters, 228, 483–493. doi:10.1016/j.epsl.2004.10.006.
56 Liebske, C., & Khan, A. (2019). On the principal building blocks of Mars and Earth. Icarus, 322, 121–134. https://doi.org/10.1016/j.icarus.2019.01.014
57 Liu, J., Dorfman, S. M., Zhu, F. J., Li, J., Wang, Y., Zhang, D., et al. (2018). Valence and spin states of iron are invisible in Earth’s lower mantle. Nature Communications, 9, 1284. https://doi.org/10.1038/s41467‐018‐03671‐5
58 Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–315. https://doi.org/10.1038/nature13068
59 Luth, R. W., & Stachel, T. (2014). The buffering capacity of lithospheric mantle: implications for diamond formation. Contributions to Mineralogy and Petrology, 168, 1–12. https://doi.org/10.1007/s00410‐014‐1083‐6
60 Madhusudhan, N. (2012). C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophysics Journal, 758, 36. doi:10.1088/0004‐637X/758/1/36.
61 Martin, R. S., Mather, T. A., & Pyle D. M. (2007). Volcanic emissions and the early Earth atmosphere. Geochimica et Cosmochimica Acta, 71, 3673–3685. https://doi.org/10.1016/j.gca.2007.04.035
62 McCammon, C. A. (2005). The paradox of mantle redox. Science, 308, 807–808. 10.1126/science.1110532
63 McKenzie, D. (1989). Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95(1–2), 5372. https://doi.org/10.1016/0012‐821X(89)90167‐2
64 Moussallam, Y., Oppenheimer, C., & Scaillet, B. (2019). On the relationship between oxidation state and temperature of volcanic gas emissions. Earth and Planetary Science Letters, 520, 260–267. https://doi.org/10.1016/j.epsl.2019.05.036
65 Nicklas R. W., Puchtel I. S., & Ash, R. D. (2018). Redox state of the Archean mantle: Evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochimica et Cosmochimica Acta, 222, 447–466. https://doi.org/10.1016/j.gca.2017.11.002
66 Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean‐Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75. doi:https://doi.org/10.1016/j.gca.2019.01.037
67 O’Neill, H. St.C. (1991). The origin of the Moon and the early history of the Earth ‐a chemical model. Part 2: The Earth. Geochimica et Cosmochimica Acta, 55, 1159–1172. https://doi.org/10.1016/0016‐7037(91)90169‐6
68 Pahlevan, K., Schaefer, L., & Hirschmann, M. M. (2019). Hydrogen isotopic evidence for early oxidation of silicate Earth. Earth and Planetary Science Letters, 115770. https://doi.org/10.1016/j.epsl.2019.115770
69 Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224. doi:10.1038/nature13080.
70 Righter, K., Sutton, S. R., Danielson, L., Pando, K., & Newville, M. (2016). Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. American Mineralogist, 101 (9), 1928–1942. doi: https://doi.org/10.2138/am‐2016‐5638
71 Rizo, H., Walker, R. J., Carlson, R. W., Horan, M. F., Mukhopadhyay, S., Manthos, V., et al. (2016). Preservation of Earth‐forming events in the tungsten isotopic composition of modern flood basalts. Science, 352, 809–812. 10.1126/science.aad8563
72 Rohrbach, A., Ballhaus, C., Ulmer, P., Golla‐Schindler, U., & Schönbohm, D. (2011). Experimental evidence for a reduced metal‐saturated upper mantle. Journal of Petrology, 52, 717–731. https://doi.org/10.1093/petrology/egq101
73 Rohrbach, A., & Schmidt, M. W. (2011). Redox freezing and melting in the Earth’s deep mantle resulting from carbon‐iron redox coupling. Nature, 472, 209–212. https://doi.org/10.1038/nature09899
74 Rollinson, H., Adetunji, J., Lenaz, D., & Szilas, K. (2017). Archaean chromitites show constant Fe3 +/∑Fe in Earth's asthenospheric mantle since 3.8 Ga. Lithos, 282–283, 316––325. https://doi.org/10.1016/j.lithos.2017.03.020
75 Rubie, D. C., Jacobson, S. A., Morbidelli, A., O’Brien, D. P., Young, E. D., de Vries, J., et al. (2015). Accretion and differentiation of the terrestrial planets with implications for the compositions of early‐formed Solar System bodies and accretion of water. Icarus, 248, 89–108. https://doi.org/10.1016/j.icarus.2014.10.015
76 Scaillet, B., & Gaillard, F. (2011). Redox state of early magmas. Nature, 480, 48–49. https://doi.org/10.1038/480048a
77 Schaefer, L., & Fegley, B. Jr. (2017). Redox states of initial atmospheres outgassed on rocky planets and planetesimals. Astrophysical Journal Letters, 843, 120. https://doi.org/10.3847/1538‐4357/aa784f
78 Smart, K. A., Tappe, S., Stern, R. A., Webb, S. J., & Ashwal, L. D. (2016). Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nature Geoscience, 9, 255–259. doi: 10.1038/NGEO2628
79 Smith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J. H., Richardson, S. H., & Wang, W. Y. (2016). Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354, 1403–1405. doi: 10.1126/science.aal1303
80 Stachel, T., Brey, G. P., & Harris, J. W. (2005). Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements, 1, 73–78. https://doi.org/10.2113/gselements.1.2.73
81 Stagno, V. (2019). Carbon, carbonates and carbonatitic melts in the Earth’s interior. Journal of the Geological Society, London, 176, 375–387. doi:https://doi.org/10.1144/jgs2018‐095
82 Stagno, V., & Frost, D. J. (2010). Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate‐bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 30, 72–84. doi:10.1016/j.epsl.2010.09.038.
83 Stagno, V., Tange, Y., Miyajima, N., McCammon, C. A., Irifune, T., & Frost, D. J. (2011). The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Research Letters, 38, L19309. https://doi.org/10.1029/2011GL049560
84 Stagno