Wetland Carbon and Environmental Management. Группа авторов
Читать онлайн книгу.10.1016/j.sedgeo.2012.06.002
16 Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., et al. (2013). Climate‐related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 10, 2, 929–944. https://doi.org/10.5194/bg‐10‐929‐2013
17 Chaudhary N., Westermann, S., Lamba, S., Shurpali, N., Britta, K., Sannel, A., et al. (2020). Modelling past and future peatland carbon dynamics across the pan‐Arctic. Global Change Biology. 26, 7, 4119–4133. https:/doi.org/10.1111/gcb.15099
18 Chimner, R. A., Cooper, D. J., Wurster, F. C., & Rochefort, L. (2017). An overview of peatland restoration in North America: where are we after 25 years? Restoration Ecology, 25, 2, 283–292. doi: 10.1111/rec.12434
19 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 4, 1111. doi: 10.1029/2002GB001917
20 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2013). Carbon and Other Biogeochemical Cycles. In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.‐K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
21 Clymo, R.S., (1984). The limits to peat bog growth. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 303, 1117, 605–654.
22 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172–185. https://doi.org/10.1007/s10021‐006‐9013‐8
23 Conchedda, G., & Tubiello, F. N. (2020). Drainage of organic soils and GHG emissions: Validation with country data. Earth System Science Data Discussions, 1–47.
24 Cooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H., & Pavelsky, T. M. (2019). Arctic‐Boreal lake dynamics revealed using CubeSat imagery. Geophysical Research Letters, 46. https://doi.org/10.1029/2018GL081584
25 Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service Report No. FWS/OBS/‐79/31. Washington, D.C.
26 Craft, C. B., & Richardson, C. J. (1993). Peat accretion and N, P, and organic C accumulation in nutrient‐enriched and unenriched Everglades peatlands. Ecological Applications, 3, 3, 446–458. doi: 10.2307/1941914
27 Craft, C., Washburn, C., & Parker, A. (2008). Latitudinal trends in organic carbon accumulation in temperate freshwater peatlands. In: Wastewater treatment, plant dynamics and management in constructed and natural wetlands, Vymazal, J. (ed.), 23–31. Springer, Dordrecht.
28 Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542, 86–90. https://doi.org/10.1038/nature21048
29 Darrah, S. E., Shennan‐Farpón, Y., Loh, J., Davidson, N. C., Finlayson, C. M., Gardner, R. C., & Walpole, M. J. (2019). Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human‐made wetlands. Ecological Indicators. Elsevier, 99, 294–298. doi: 10.1016/j.ecolind.2018.12.032
30 Davidson, N. C. (2014). How much wetland has the world lost? Long‐term and recent trends in global wetland area. Marine and Freshwater Research, 65, 10, 934. doi: 10.1071/MF14173.
31 DeLaune, R. D., & White, J. R. (2012). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change, 110, 297–314. doi:10.1007/s10584‐011‐0089‐6
32 Dixon, M. J. R., Loh, J., Davidson, N. C., Beltrame, C., Freeman, R., & Walpole, M. (2016). Tracking global change in ecosystem area: The Wetland Extent Trends index. Biological Conservation, 193, 27–35. doi: 10.1016/j.biocon.2015.10.023
33 Dommain, R., Couwenberg, J., & Joosten, H. (2011). Development and carbon sequestration of tropical peat domes in south‐east Asia: Links to post‐glacial sea‐level changes and Holocene climate variability. Quaternary Science Reviews 30, 999–1010. https://doi.org/10.1016/j.quascirev.2011.01.018
34 Draper, F. C., Roucoux, K. H., Lawson, I. T., Mitchard, E. T. A., Honorio Coronado, E. N., Lähteenoja, O., et al. (2014). The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters, 9, 124017. https://doi.org/10.1088/1748‐9326/9/12/124017
35 Drexler, J. Z., Fuller, C. C., Orlando, J., Salas, A., Wurster, F. C., & Duberstein, J. A. (2017). Estimation and uncertainty of recent carbon accumulation and vertical accretion in drained and undrained forested peatlands of the southeastern USA. Journal of Geophysical Research: Biogeosciences, 122, 10, 2563–2579. https://doi.org/10.1002/2017JG003950
36 Drösler, M., Verchot, L. V., Freibauer, A., Pan, G., Evans, C. D., Bourbonniere, R. A., et al. (2014). Chapter 2: Drained inland organic soils. In: Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Jamsranjav, B., Fukuda, M., Troxler, T. (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC, Switzerland, pp. 1–79.
37 Duarte, C. M., Middelburg, J. J., & Caraco, N. (2005a). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8. doi:hal‐00297772
38 Duarte, C. M., & Prairie, Y. T. (2005b). Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems, 8, 7, 862–870. https://doi.org/10.1007/s10021‐005‐0177‐4
39 Duarte, C. M., Dennison, W. C., Orth, R. J. W., & Carruthers, T. J. B. (2008). The charisma of coastal ecosystems: Addressing the imbalance. Estuaries and Coasts, 31, 233–238. doi:10.1007/s12237‐008‐9038‐7
40 Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968. doi:10.1038/nclimate1970
41 Duarte, C. M. (2017). Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences, 14, 301–310. https://doi.org/10.5194/bg‐14‐301‐2017
42 Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 3, 345–366. doi: 10.1890/0012‐9615(1997)067
43 Erb, K.‐H. Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster, S., et al. (2017). Land management: data availability and process understanding for global change studies. Global Change Biology, 23, 2, 512–533. doi: 10.1111/gcb.13443.
44 Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., et al. (2019). Hillslope hydrology in global change research and Earth system modeling. Water Resources Research, 55, 1737–1772. doi:10.1029/2018WR023903
45 FAO, 2020. Peatlands mapping and monitoring: Recommendations and technical overview. FAO. https://doi.org/10.4060/ca8200en
46 Fatoyinbo, L. (2017). Vast peatlands