North American Agroforestry. Группа авторов
Читать онлайн книгу.inhibits pine growth under certain moisture regimes. Soil Science Society of America Journal, 42, 801–803. https://doi.org/10.2136/sssaj1978.03615995004200050030x
37 Foley, J. A., Ramankutty, N., Brauman, K., Cassidy, E. S., Gerber, J. S., Johnston, M., . . .Zaks, D. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452pmid:21993620
38 Ford, M., Zamora, D., Current, D., Magner, J., Wyatt, G., Walter, D., & Vaughan, S. (2019). Impact of managed woodland grazing on forage quantity, quality and livestock performance: The potential for silvopasture in Central Minnesota, USA. Agroforestry Systems, 93, 67–79.
39 Funabashi, M. (2018). Human augmentation of ecosystems: Objectives for food production and science by 2045. npj Science of Food, 2, 16. https//doi.org/10.1038/s41538‐018‐0026‐4
40 Gakis, S., Mantzanas, K., Alifragis, D., Papanastasis, V. P., Papaioannou, A., Seilopoulos, D., & Platis, P. (2004). Effects of understory vegetation on tree establishment and growth in a silvopastoral system in northern Greece. Agroforestry Systems, 60, 149–157.
41 Garcia‐Barrios, L., & Ong, C. K. (2004). Ecological interactions, management lessons, and design tools in tropical agroforestry systems. Agroforestry Systems, 61, 221–236.
42 Garrett, H. E., McGraw, R. L., & Walter, W. D. (2009). Alley cropping practices. In H. E. Garrett (Ed.), North American agroforestry: An integrated science and practice (2nd ed., pp. 133–162). Madison, WI: ASA.
43 Garrity, D. P. (2004). Agroforestry and the achievement of the millennium development goals. Agroforestry Systems, 61, 5–17.
44 Gause, G.F. 1934. The struggle for existence. Baltimore, MD: Williams & Wilkins.
45 Geyer, W. A., & Fick, W. H. (2015). Yield and forage quality of smooth brome in a black walnut alley‐cropping practice. Agroforestry Systems, 89, 107–112.
46 Gibbs, S., Koblents, H., Coleman, B., Gordon, A., Thevathasan, N., & Wiliams, P. (2016). Avian diversity in a temperate tree‐based intercropping system from inception to now. Agroforestry Systems, 90, 905–916. https://doi.org/10.1007/s10457‐016‐9901‐7
47 Gillespie, A. R., Jose, S., Mengel, D. B., Hoover, W. L., Pope, P. E., Seifert, J. R., . . .Benjamin, T. J. (2000). Defining competition vectors in a temperate alley cropping system in the midwestern USA: 1. Production physiology. Agroforestry Systems, 48, 25–40.
48 Gillespie, A. R., Miller, B. K., & Johnson, K. D. (1995). Effects of ground cover on tree survival and growth in filter strips of the Cornbelt region of the midwestern US. Agriculture, Ecosystems & Environment, 53, 263–270.
49 Goldberg, D. E. (1990). Components of resource competition in plant communities. In J. B. Grace & D. Timan (Ed.), Perspectives on plant competition (pp. 27–65). San Diego, CA: Academic Press.
50 Gómez‐Gutierrez, J. M., & Pérez‐Fernández, M. (1996). The “dehesas”: Silvopastoral systems in semiarid Mediterranean regions with poor soils, seasonal climate and extensive utilisation. In M. Etienne (Ed.), Western European silvopastoral systems (pp. 55–70). Paris: INRA Editions.
51 Gravel, D., Mouquet, N., Loreau, M., & Guichard, F. (2010). Patch dynamics, persistence, and species coexistence in metaecosystems. The American Naturalist, 176, 289–302.
52 Hardin, G. (1960). The competitive exclusion principle. Science, 131, 1292–1297.
53 Holmgren, M., Scheffer, M., & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. Ecology, 78, 1966–1975.
54 Horton, J. L., & Hart, S. C. (1998). Hydraulic lift: A potentially important ecosystem process. Trends in Ecology & Evolution, 13, 232–235. https://doi.org/10.1016/s0169‐5347(98)01328‐7
55 Hubbell, S. P. (2001). The unified neutral theory of species abundance and diversity. Princeton, NJ: Princeton Univ. Press.
56 Inderjit, & Mallik, A. U. (2002). Chemical ecology of plants: Allelopathy in aquatic and terrestrial ecosystems. Basel, Switzerland: Birkhauser.
57 Isabelle, B., Damien, G., & Wilfried, T. (2014). FATE‐HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Global Change Biology, 20, 2368–2378.
58 Johnson, R. J., & Beck, M. M. (1988). Influences of shelterbelts on wildlife management and biology. Agriculture, Ecosystems & Environment, 22–23, 301–335.
59 Jose, S. (1997). Interspecific interactions in alley cropping: The physiology and biogeochemistry (Doctoral dissertation). West Lafayette, IN: Purdue University.
60 Jose, S. (2002). Black walnut allelopathy: Current state of the science. In Inderjit & A. U. Mallik (Eds.), Chemical ecology of plants: Allelopathy in aquatic and terrestrial ecosystems (pp. 149–172). Basel, Switzerland: Birkhauser.
61 Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76, 1–10. https://doi.org/10.1007/s10457‐009‐9229‐7
62 Jose, S., & Dollinger, J. (2019). Silvopasture: A sustainable livestock production system. Agroforestry Systems, 93, 1–9. https://doi.org/10.1007/s10457‐019‐00366‐8
63 Jose, S., & Gillespie, A. R. (1998). Allelopathy in black walnut (Juglans nigra L.) alley cropping: I. Spatio‐temporal variation in soil juglone in a black walnut–corn (Zea mays L.) alley cropping system in the mid‐western USA. Plant and Soil, 203, 191–197.
64 Jose, S., Gillespie, A. R., & Pallardy, S. G. (2004). Interspecific interactions in temperate agroforestry. Agroforestry Systems, 61, 237–255.
65 Jose, S., Gillespie, A. R., Seifert, J. R., & Biehle, D. J. (2000). Defining competition vectors in a temperate alley cropping system in the mid‐western USA: 2. Competition for water. Agroforestry Systems, 48, 41–59.
66 Jose, S., Gillespie, A. R., Seifert, J. R., Mengel, D. B., & Pope, P. E. (2000). Defining competition vectors in a temperate alley cropping system in the mid‐western USA: 3. Competition for nitrogen and litter decomposition dynamics. Agroforestry Systems, 48, 61–77.
67 Jose, S., & Holzmueller, E. J. (2008). Black walnut allelopathy: Implications for intercropping. In R. S. Zeng, A. U. Mallik, & S. M. Luo (Eds.), Allelopathy in sustainable agriculture and forestry. New York: Springer. https://doi.org/10.1007/978‐0‐387‐77337‐7_16
68 Jose, S., Williams, R., & Zamora, D. (2006). Belowground ecological interactions in mixed‐species forest plantations. Forest Ecology and Management, 233, 231–239. https://doi.org/10.1016/j.foreco.2006.05.014
69 Kallenbach, R. L., Kerley, M. S., & Bishop‐Hurley, G. J. (2006). Cumulative forage production, forage quality and livestock performance from an annual ryegrass and cereal rye mixture in a pine–walnut silvopasture. Agroforestry Systems, 66, 43–53.
70 Kelty, M. J. (2000). Species interactions, stand structure, and productivity in agroforestry systems In M. S. Ashton & R. Montagnini (Eds.) The silvicultural basis for agroforestry systems (pp. 183–203). Boca Raton, FL: CRC Press.
71 Kort, J. (1988). Benefits of windbreaks to field and forage crops. Agriculture, Ecosystems & Environment, 22–23, 165–191.
72 Kozlowski, T. T., & Pallardy, S.G. (1997). Physiology of woody plants (2nd ed.). San Diego, CA: Academic Press.
73 Krueger, W. C. (1981). How a forest affects a forage crop. Rangelands,