Fractures in the Horse. Группа авторов

Читать онлайн книгу.

Fractures in the Horse - Группа авторов


Скачать книгу
C.M., Vaughan, L.C., Evans, G.P. et al. (1993). Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat. Embryol. 187: 239–248.

      19 19 Aszódi, A., Bateman, J.F., Gustafsson, E. et al. (2000). Mamalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Struct. Funct. 25: 73–84.

      20 20 Schwarcz, H.P., Abueidda, D., and Jasiuk, I. (2017). The ultrastructure of bone and its relevance to mechanical properties. Front. Phys. 5: 39. https://doi.org/10.3389/fphy.2017.00039.

      21 21 Orgel, J., Irving, T., Miller, A., and Wess, T. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U. S. A. 103: 9001–9005.

      22 22 Rey, C., Miquel, J., Facchini, L. et al. (1995). Hydroxyl groups in bone mineral. Bone 16: 583–586.

      23 23 Landis, W.J., Song, M.J., Leith, A. et al. (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high‐voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110 (1): 39–54.

      24 24 Glimcher, M.J. (1992). The nature of the mineral component of bone and the mechanism of calcification. In: Disorders of Bone and Mineral Metabolism (eds. F.L. Coe and M.J. Favus), 265–286. New York: Raven Press.

      25 25 Cullinane, D.M. (2002). The role of osteocytes in bone regulation: mineral homeostasis versus mechanoreception. J. Musculoskeleton Neuronal. Interact. 2: 242–244.

      26 26 Bonewald, L.F. (2011). The amazing osteocyte. J. Bone Miner. Res. 26: 229–238.

      27 27 Ammann, P. and Rizzoli, R. (2003). Bone strength and its determinants. Osteoporos Int. 14: 13–18.

      28 28 Currey, J.D., Foreman, J., Laketić, I. et al. (1997). Effects of ionizing radiation on the mechanical properties of human bone. J. Orthop. Res. 15: 111–117.

      29 29 Buckley, K., Matousek, P., Parker, W., and Goodship, A.E. (2012). Raman spectroscopy reveals differences in collagen secondary structure which relate to the levels of mineralisation in bones that have evolved for different functions. J. Raman Spectrosc. 43: 1237–1243.

      30 30 Buckley, K., Kerns, J.G., Birch, H.L. et al. (2014). Functional adaptation of long bone extremities involves the localized “tuning” of the cortical bone composition; evidence from Raman spectroscopy. J. Biomed. Opt. 19: 11602. https://doi.org/10.1117/1.JBO.19.11.111602.

      31 31 O'Brien, F.J., Taylor, D., and Lee, T.C. (2005). The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. 23: 475–480.

      32 32 Danova, N.A., Colopy, S.A., Radtke, C.L. et al. (2003). Degredation of bone structural properties by accumulation and coalescence of microcracks. Bone 33: 197–205.

      33 33 Burr, D.B., Turner, C.H., Naick, P. et al. (1998). Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31: 337–345.

      34 34 Sobelman, O.S., Gigeling, J.C., Stover, S.M. et al. (2004). Do microcracks decrease or increase fatigue resistance in cortical bone? J. Biomech. 37: 1295–1303.

      35 35 Evans, G.P., Behiri, J.C., Vaughan, L.C., and Bonfield, W. (1992). The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet. J. 24: 125–128.

      36 36 Nunamaker, D.M., Butterweek, D.M., and Provost, M.T. (1990). Fatigue fractures in Thoroughbred racehorses: relationships with age, peak bone strain and training. J. Orthop. Res. 8: 604–611.

      37 37 Nunamaker, D.M., Butterweck, D.M., and Provost, M.T. (1989). Some geometric properties of the third metacarpal bone: a comparison between the Standardbred and Thoroughbred racehorse. J. Biomech. 22: 129–134.

      38 38 Lanyon, L.E. (1984). Functional strain as a determinant for bone remodeling. Calcif. Tissue Int. 36: S56–S61.

      39 39 Rubin, C.T. and Lanyon, L.E. (1984). Dynamic strain similarity in vertebrates: an alternative to allometric limb bone scaling. J. Theor. Biol. 107: 321–327.

      40 40 Ehrlich, P.J. and Lanyon, L.E. (2002). Mechanical strain and bone cell function: a review. Osteoporos. Int. 13: 688–700.

      41 41 Frost, H.M. (1987). Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219: 1–9.

      42 42 Skerry, T. (2006). One mechanostat or many? Modifications of the site‐specific response of bone to mechanical loading by nature and nurture. J. Musculoskelet. Neuronal Interact. 6: 122–127.

      43 43 Mason, D.J., Suva, L.J., Genever, P.G. et al. (1997). Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 20: 199–205.

      44 44 Rubin, C.T. and Lanyon, L.E. (1984). Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66: 397–402.

      45 45 Nunamaker, D.M. (2002). On bucked shins. AAEP 48: 76–89.

      46 46 Murphy, A.M., Verheyen, K.L.P., Swindlehurst, J., et al. (2010). A Genetic Association Between SNPs in Low Density‐Lipoprotein Receptor‐Related Protein (LRP5) and Risk of Fracture in the UK Thoroughbred. Abstract: Plant & Animal Genomes XVIII Conference. Town & Country Convention Center San Diego, CA.

      47 47 Duncan, E.L., Danoy, P., Kemp, J.P. et al. (2011). Genome‐Wide Association Study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7: e1001372. http://www.plosgenetics.org.

      48 48 Riggs, C.M. and Boyde, A. (1999). Effect of exercise on bone density in distal regions of the equine third metacarpal bone. A study in 2 year old thoroughbreds. Equine Vet. J. Suppl. 30: 555–560.

      49 49 Radin, E.L. and Rose, R.M. (1986). Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Relat. Res. 213: 34–40.

      50 50 Kawcak, C.E., McIlwraith, C.W., Norrdin, R.W. et al. (2001). The role of subchondral bone in joint disease: a review. Equine Vet. J. 33: 120–126.

      51 51 Muir, P., Peterson, A.L., Sample, S.J. et al. (2008). Exercise‐induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse. J. Anat. 213: 706–717.

      52 52 Jaworski, Z.F., Liskova‐Kiar, M., and Uhthoff, H.K. (1980). Effect of long‐term immobilisation on the pattern of bone loss in older dogs. J. Bone Joint Surg. 62: 104–110.

      53 53 Skerry, T.M. and Lanyon, L.E. (1995). Interruption of disuse by short duration walking exercise does not prevent bone loss in the sheep calcaneus. Bone 16: 269–274.

      54 54 O'Doherty, D.M., Butler, S.P., and Goodship, A.E. (1995). Stress protection due to external fixation. J. Biomech. 28: 575–586.

      55 55 Rubin, C.T., McLeod, K.J., and Bain, S.D. (1990). Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J. Biomech. 23: 43–54.

      56 56 Qin, Y.‐X., Kaplan, T., Saldanha, A., and Rubin, C. (1998). Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech. 36: 1427–1437.

      57 57 Fritton, S.P., McLeod, K.J., and Rubin, C.T. (2000). Quantifying the strain history of bone: spatial uniformity and self‐similarity of low‐magnitude strains. J. Biomech. 33: 317–325.

      58 58 McLeod, K.J. and Rubin, C.T. (1992). The effect of low‐frequency electrical fields on osteogenesis. J. Bone Joint Surg. 74: 920–929.

      59 59 Baggott, D.G., Goodship, A.E., and Lanyon, L.E. (1981). A quantitative assessment of compression plate fixation in vivo: an experimental study using the sheep radius. J. Biomech. 14: 701–711.

      60 60 Matter, P., Brennwald, J., and Perren, S.M. (1974). Biologische reaktion des knochens auf osteosyntheses platten. Helv. Chir. Acta 12: 1–44.

      61 61 Perren, S.M., Cordey, J., Rahn,


Скачать книгу