Nonlinear Filters. Simon Haykin

Читать онлайн книгу.

Nonlinear Filters - Simon  Haykin


Скачать книгу
href="#fb3_img_img_d47ea9c2-34bf-52b9-aa72-3d0fcf90dbf5.png" alt="StartLayout 1st Row 1st Column bold x Subscript k plus 1 2nd Column equals bold upper A bold x Subscript k Baseline plus bold upper B bold u Subscript k Baseline comma EndLayout"/>

      (3.2)StartLayout 1st Row 1st Column bold y Subscript k 2nd Column equals bold upper C bold x Subscript k Baseline plus bold upper D bold u Subscript k Baseline comma EndLayout

      where bold x Subscript k Baseline element-of double-struck upper R Superscript n Super Subscript x, bold u Subscript k Baseline element-of double-struck upper R Superscript n Super Subscript u, and bold y Subscript k Baseline element-of double-struck upper R Superscript n Super Subscript y denote state, input, and output vectors, respectively, and left-parenthesis bold upper A comma bold upper B comma bold upper C comma bold upper D right-parenthesis are the model parameters, which are matrices with appropriate dimensions. Luenberger observer is a sequential or recursive state estimator, which needs the information of only the previous sample time to reconstruct the state as:

      (3.3)ModifyingAbove bold x With Ì‚ Subscript k vertical-bar k Baseline equals ModifyingAbove bold x With Ì‚ Subscript k vertical-bar k minus 1 Baseline plus bold upper L left-parenthesis bold y Subscript k Baseline minus bold upper C ModifyingAbove bold x With Ì‚ Subscript k vertical-bar k minus 1 Baseline minus bold upper D bold u Subscript k Baseline right-parenthesis comma

      (3.4)ModifyingAbove bold x With Ì‚ Subscript k vertical-bar k minus 1 Baseline equals bold upper A ModifyingAbove bold x With Ì‚ Subscript k minus 1 vertical-bar k minus 1 Baseline plus bold upper B bold u Subscript k minus 1 Baseline comma

      with the initial condition ModifyingAbove bold x With Ì‚ Subscript 0 vertical-bar 0 Baseline equals bold x 0.

      (3.5)bold e Subscript k plus 1 Baseline equals left-parenthesis bold upper A minus bold upper A bold upper L bold upper C right-parenthesis bold e Subscript k Baseline period

      The gain matrix, bold upper L, is determined by choosing the closed‐loop observer poles, which are the eigenvalues of left-parenthesis bold upper A minus bold upper A bold upper L bold upper C right-parenthesis. Using the pole placement method to design the Luenberger observer requires the system observability. In order to have a stable observer, moduli of the eigenvalues of left-parenthesis bold upper A minus bold upper A bold upper L bold upper C right-parenthesis must be strictly less than one. A deadbeat observer is obtained, if all the eigenvalues are zero. The Luenberger observer is designed based on a compromise between rapid decay of the reconstruction error and sensitivity to modeling error and measurement noise [9]. Section 3.3 provides an extension of the Luenberger observer for nonlinear systems.

      A class of nonlinear observers is designed based on observer error linearization. State estimation by such observers involves multiplication of a matrix gain by the difference between predicted and measured outputs. After designing the observer (selecting the observer gain), this calculation can be performed fairly quickly, which is an advantage from the computational complexity perspective. However, the domain of applicability of such observers may be restricted to a specific class of nonlinear systems. A discrete‐time nonlinear Luenberger‐type observer has been proposed in [36]. A deterministic discrete‐time nonlinear system is described by the following state‐space model:

      (3.7)StartLayout 1st Row 1st Column bold y Subscript k 2nd Column equals bold g left-parenthesis bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis comma EndLayout

      where bold f and bold g are nonlinear vector functions. At time instant k, let bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k denote the sequence of the past n Subscript x inputs:

      (3.8)Start 6 By 1 Matrix 1st Row bold u Subscript k minus n Sub Subscript x Subscript plus 1 Baseline 2nd Row bold u Subscript k minus n Sub Subscript x Subscript plus 2 Baseline 3rd Row vertical-ellipsis 4th Row bold u Subscript k minus 2 Baseline 5th Row bold u Subscript k minus 1 Baseline 6th Row bold u Subscript k Baseline EndMatrix comma

      (3.9)Start 4 By 1 Matrix 1st Row vertical-ellipsis 2nd Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 3 Baseline 3rd Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 2 Baseline 4th Row ModifyingAbove bold y With Ì‚ Subscript k vertical-bar k minus 1 Baseline EndMatrix equals Start 4 By 1 Matrix 1st Row vertical-ellipsis 2nd Row bold g left-parenthesis bold f left-parenthesis bold f left-parenthesis bold x Subscript k minus 2 Baseline comma bold u Subscript k minus 2 Baseline right-parenthesis comma bold u Subscript k minus 1 Baseline right-parenthesis comma bold u Subscript k Baseline right-parenthesis 3rd Row bold g left-parenthesis bold f left-parenthesis bold x Subscript k minus 1 Baseline <hr><noindex><a href=Скачать книгу