Генезис. Небо и Земля. Том 1. История. Максим Филипповский

Читать онлайн книгу.

Генезис. Небо и Земля. Том 1. История - Максим Филипповский


Скачать книгу
(1916) предсказал существование гравитационных волн. [459,460] После ряда наблюдений и соображений астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) (2014) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. [461] Обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике. Спустя век после предсказания Эйнштейна международными коллаборациями LIGO и Virgo в 2016 году148 сообщено об обнаружении события прохождения гравитационных волн GW150914 при взаимодействии двух черных дыр. [462] За это открытие одним из лауреатов Нобелевской премии в 2017 году стал Кип Торн, который стоял у истоков создания обсерватории LIGO (Laser Interferometer Gravitational Wave Observatory).

      §219. Ганс Рейсснер и Гуннар Нордстрём (1916) предложили решение уравнений Эйнштейна-Максвела, описывающих заряженную черную дыру. [457,458] Это статичное решение уравнений, которое соответствует гравитационному полю для сферически-симметричной чёрной дыры с зарядом, обладающим массой, но без вращения.

      §220. Карл Шварцшильд (1916) предложил сингулярное статическое точное решение149 уравнений поля Эйнштейна для гравитационного поля вне невращающегося сферически симметричного тела с массой, описывающее минимальную черную дыру. [463] Шварцшильд ввел в научный обиход понятие гравитационного радиуса, который представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий, создаваемый этой массой (с точки зрения общей теории относительности), если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась, но радиальные движения допустимы), и целиком лежала бы внутри этой сферы150. Ранее подобные расчеты радиуса сферически симметричного тела, у которого скорость выхода равна скорости света, с использованием ньютоновской механики предлагали Мичелл и Лаплас. [464,465]

      §221. Виллем де Ситтер (1916—1917) в своих работах «Об эйнштейновской теории гравитации и её астрономических следствиях» выдвинул космологическую модель Вселенной, которая предсказывает возможность быстрых движений космических объектов, и послужила отправной точкой позднейших теорий расширяющейся Вселенной. Он предположил, что скорость удаления отдалённых объектов должна возрастать с их расстоянием. [466]

      §222. Вследствие принципа причинности Эйнштейна (1917) любое событие может оказать причинно-следственное влияние только на те события, которые происходят позже него, и не может оказать влияние на любые события, совершившиеся раньше него. [467] Инвариантность причинно-следственной связи в теории относительности связана с принципом близкодействия, которым установлено, что скорость передачи причинного взаимодействия конечна и не может превышать скорости света в вакууме. В отличие от физики Ньютона, основанной на принципе дальнодействия, теория относительности


Скачать книгу

<p>148</p>

Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (v / c> 0,5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (<1,2 × 10—22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать

<p>149</p>

Существование чёрных дыр следует из точных решений уравнений Эйнштейна, первое из которых было получено Карлом Шварцшильдом. Сам термин «черная дыра» придуман Джоном Арчибальдом Уилером в конце 1967 года и впервые употреблён в публичной лекции «Наша Вселенная: известное и неизвестное» (Our Universe: the Known and Unknown) 29 декабря 1967 года. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars).

<p>150</p>

Радиус Шварцшильда для Солнца составляет приблизительно 3,0 км, тогда как радиус Земли-всего около 9 мм, а радиус Луны-около 0,1 мм. Масса наблюдаемой Вселенной имеет радиус Шварцшильда приблизительно 13,7 миллиарда световых лет. Любой объект, радиус которого меньше радиуса Шварцшильда, называется черной дырой. Поверхность в радиусе Шварцшильда действует как горизонт событий в невращающемся теле (вращающаяся черная дыра работает несколько иначе). Ни свет, ни частицы не могут выйти через эту поверхность из области внутри, отсюда и название «черная дыра». Черная дыра – это сферическая область в пространстве, которое окружает сингулярность в ее центре; это не сама сингулярность. Черные дыры можно классифицировать по радиусу Шварцшильда или, что эквивалентно, по плотности. Поскольку радиус линейно связан с массой, в то время как заключенный объем соответствует третьей степени радиуса, малые черные дыры, следовательно, гораздо плотнее больших. Объем, заключенный в горизонт событий наиболее массивных черных дыр, имеет среднюю плотность ниже, чем звезды главной последовательности. Сверхмассивная черная дыра (SMBH) является самым крупным типом черной дыры, хотя есть несколько официальных критериев того, как такой объект считается так, порядка сотен тысяч до миллиардов солнечных масс. (Обнаружены сверхмассивные черные дыры размером до 21 миллиарда (2,1 × 1010) м☉, такие как NGC 4889). В отличие от черных дыр со звездной массой, сверхмассивные черные дыры имеют сравнительно низкую среднюю плотность. С учетом этого средняя плотность сверхмассивной черной дыры может быть меньше плотности воды. Радиус Шварцшильда тела пропорционален его массе и, следовательно, его объему, предполагая, что тело имеет постоянную плотность массы. Напротив, физический радиус тела пропорционален кубическому корню его объема. Поэтому, поскольку тело накапливает вещество при заданной фиксированной плотности, его радиус Шварцшильда будет увеличиваться быстрее, чем его физический радиус. Когда тело с такой плотностью вырастет до 136 миллионов солнечных масс (1,36 × 108 м☉), его физический радиус будет захвачен радиусом Шварцшильда, и, таким образом, оно образует сверхмассивную черную дыру. Считается, что сверхмассивные черные дыры, подобные этим, не образуются сразу после сингулярного коллапса скопления звезд. Вместо этого они могут начать жизнь как меньшие черные дыры размером со звезду и увеличиваться за счет аккреции материи или даже других черных дыр. Небольшая масса имеет чрезвычайно малый радиус Шварцшильда. Масса, подобная горе Эверест, имеет радиус Шварцшильда гораздо меньше нанометра. Его средняя плотность при таком размере была бы настолько высока, что ни один известный механизм не мог бы сформировать такие чрезвычайно компактные объекты. Такие черные дыры могли образоваться на ранней стадии эволюции Вселенной, сразу после Большого Взрыва, когда плотность была чрезвычайно высока. Поэтому эти гипотетические миниатюрные черные дыры называются первичными черными дырами.