Genome Editing in Drug Discovery. Группа авторов
Читать онлайн книгу.Doudna, J.A. (2015). Conformational control of DNA target cleavage by CRISPR‐Cas9. Nature 527: 110–113.
208 Strecker, J., Jones, S., Koopal, B. et al. (2019a). Engineering of CRISPR‐Cas12b for human genome editing. Nat. Commun. 10: 212.
209 Strecker, J., Ladha, A., Gardner, Z. et al. (2019b). RNA‐guided DNA insertion with CRISPR‐associated transposases. Science 365: 48–53.
210 Stringer, A.M., Cooper, L.A., Kadaba, S. et al. (2020). Characterization of primed adaptation in the Escherichia coli type I‐E CRISPR‐Cas system. bioRxiv.
211 Strutt, S.C., Torrez, R.M., Kaya, E. et al. (2018). RNA‐dependent RNA targeting by CRISPR‐Cas9. elife 7.
212 Swarts, D.C., Mosterd, C., Van Passel, M.W., and Brouns, S.J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS One 7: e35888.
213 Swarts, D.C., Van Der Oost, J., and Jinek, M. (2017). Structural basis for guide RNA processing and seed‐dependent DNA targeting by CRISPR‐Cas12a. Mol. Cell 66: 221–233. e4.
214 Tambe, A., East‐Seletsky, A., Knott, G.J. et al. (2018). RNA binding and HEPN‐nuclease activation are decoupled in CRISPR‐Cas13a. Cell Rep. 24: 1025–1036.
215 Tamulaitis, G., Kazlauskiene, M., Manakova, E. et al. (2014). Programmable RNA shredding by the Type III‐A CRISPR‐Cas system of Streptococcus thermophilus. Mol. Cell 56: 506–517.
216 Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. (2014). A protein‐tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159: 635–646.
217 Taylor, D.W., Zhu, Y., Staals, R.H. et al. (2015). Structures of the CRISPR‐Cmr complex reveal mode of RNA target positioning. Science 348: 581–585.
218 Teng, F., Cui, T., Feng, G. et al. (2018). Repurposing CRISPR‐Cas12b for mammalian genome engineering. Cell Discov. 4: 63.
219 Teng, F., Cui, T., Gao, Q. et al. (2019a). Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov. 5: 23.
220 Teng, F., Guo, L., Cui, T. et al. (2019b). CDetection: CRISPR‐Cas12b‐based DNA detection with sub‐attomolar sensitivity and single‐base specificity. Genome Biol. 20: 132.
221 Teng, F., Li, J., Cui, T. et al. (2019c). Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 20: 15.
222 Toro, N., Mestre, M.R., Martinez‐Abarca, F., and Gonzalez‐Delgado, A. (2019). Recruitment of reverse transcriptase‐Cas1 fusion proteins by Type VI‐A CRISPR‐Cas systems. Front. Microbiol. 10: 2160.
223 Touchon, M. and Rocha, E.P. (2010). The small, slow and specialized CRISPR and anti‐CRISPR of escherichia and salmonella. PLoS One 5: e11126.
224 Van Houte, S., Ekroth, A.K., Broniewski, J.M. et al. (2016). The diversity‐generating benefits of a prokaryotic adaptive immune system. Nature 532: 385–388.
225 Vo, P.L.H., Ronda, C., Klompe, S.E. et al. (2021). CRISPR RNA‐guided integrases for high‐efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39: 480–489.
226 Vojta, A., Dobrinic, P., Tadic, V. et al. (2016). Repurposing the CRISPR‐Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44: 5615–5628.
227 Walton, R.T., Christie, K.A., Whittaker, M.N., and Kleinstiver, B.P. (2020). Unconstrained genome targeting with near‐PAMless engineered CRISPR‐Cas9 variants. Science 368: 290–296.
228 Wang, J., Li, J., Zhao, H. et al. (2015). Structural and mechanistic basis of PAM‐dependent spacer acquisition in CRISPR‐Cas systems. Cell 163: 840–853.
229 Wang, A.S., Chen, L.C., Wu, R.A. et al. (2020). The histone chaperone FACT induces Cas9 multi‐turnover behavior and modifies genome manipulation in human cells. Mol. Cell 79: 221–233. e5.
230 Wei, Y., Chesne, M.T., Terns, R.M., and Terns, M.P. (2015). Sequences spanning the leader‐repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res. 43: 1749–1758.
231 Weinberger, A.D., Sun, C.L., Plucinski, M.M. et al. (2012). Persisting viral sequences shape microbial CRISPR‐based immunity. PLoS Comput. Biol. 8: e1002475.
232 Wilkinson, M., Drabavicius, G., Silanskas, A. et al. (2019). Structure of the DNA‐bound spacer capture complex of a Type II CRISPR‐Cas system. Mol. Cell 75: 90–101. e5.
233 Wright, A.V., Liu, J.‐J., Knott, G.J. et al. (2017). Structures of the CRISPR genome integration complex. Science 357: 1113–1118.
234 Xiao, Y., Luo, M., Hayes, R.P. et al. (2017). Structure basis for directional R‐loop formation and substrate handover mechanisms in Type I CRISPR‐Cas system. Cell 170: 48–60. e11.
235 Xu, X. and Qi, L.S. (2019). A CRISPR‐dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431: 34–47.
236 Xu, Z., Li, M., Li, Y. et al. (2019). Native CRISPR‐Cas‐mediated genome editing enables dissecting and sensitizing clinical multidrug‐resistant P. aeruginosa. Cell Rep. 29: 1707–1717. e3.
237 Xue, C., Whitis, N.R., and Sashital, D.G. (2016). Conformational control of cascade interference and priming activities in CRISPR immunity. Mol. Cell 64: 826–834.
238 Yan, W.X., Hunnewell, P., Alfonse, L.E. et al. (2019). Functionally diverse type V CRISPR‐Cas systems. Science 363: 88–91.
239 Yourik, P., Fuchs, R.T., Mabuchi, M. et al. (2019). Staphylococcus aureus Cas9 is a multiple‐turnover enzyme. RNA 25: 35–44.
240 Zalatan, J.G., Lee, M.E., Almeida, R. et al. (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339–350.
241 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.
242 Zetsche, B., Heidenreich, M., Mohanraju, P. et al. (2017). Multiplex gene editing by CRISPR‐Cpf1 using a single crRNA array. Nat. Biotechnol. 35: 31–34.
243 Zetsche, B., Abudayyeh, O.O., Gootenberg, J.S. et al. (2020). A Survey of genome editing activity for 16 Cas12a orthologs. Keio J. Med. 69: 59–65.
244 Zhang, Y., Heidrich, N., Ampattu, B.J. et al. (2013). Processing‐independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50: 488–503.
245 Zhang, B., Ye, W., Ye, Y. et al. (2018). Structural insights into Cas13b‐guided CRISPR RNA maturation and recognition. Cell Res. 28: 1198–1201.
246 Zhou, Y., Bravo, J.P.K., Taylor, H.N. et al. (2020). Structure of a type IV CRISPR‐Cas effector complex. bioRxiv.
4 Commercially Available Reagents and Contract Research Services for CRISPR‐Based Studies
Klio Maratou1, Aaron T. Cheng2, Fiona M. Behan1, Ning Sun2, and Quinn Lu3
1 Functional Genomics, R&D GlaxoSmithKline, Stevenage, UK
2 Functional Genomics, R&D GlaxoSmithKline, Upper Providence, PA, USA
3 Novel Human Genetics Research Unit, R&D GlaxoSmithKline, Upper Providence, PA, USA
4.1 Introduction
CRISPR genome editing technologies provide versatile tools for the genetic manipulation and screening of genes and pathways in mammalian cells and in model animals. Their applications in drug discovery are broad, including target discovery, target validation, mechanism of action, and target engagement studies (Lu et al. 2017). Since first described, many improvements and novel applications of the technology have been reported. The technologies include gene knock out (KO) via non‐homologous end joining (NHEJ) following CRISPR‐mediated double‐stranded break (DSB), gene knock in (KI) for SNP/mutation generation