Genome Editing in Drug Discovery. Группа авторов

Читать онлайн книгу.

Genome Editing in Drug Discovery - Группа авторов


Скачать книгу
325–330.

      5 Boettcher, M., Tian, R., Blau, J.A. et al. (2018). Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36: 170–178.

      6 Borys, S.M. and Younger, S.T. (2020). Identification of functional regulatory elements in the human genome using pooled CRISPR screens. BMC Genomics 21: 107.

      7 Bradford, J. and Perrin, D. (2019a). A benchmark of computational CRISPR‐Cas9 guide design methods. PLoS Comput. Biol. 15: e1007274.

      8 Bradford, J. and Perrin, D. (2019b). Improving CRISPR guide design with consensus approaches. BMC Genomics 20: 931.

      9 Braun, C.J., Bruno, P.M., Horlbeck, M.A. et al. (2016). Versatile in vivo regulation of tumor phenotypes by dCas9‐mediated transcriptional perturbation. Proc. Natl. Acad. Sci. U. S. A. 113: E3892–E3900.

      10 Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42: e168.

      11 Chen, S., Sanjana, N.E., Zheng, K. et al. (2015). Genome‐wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 1246–1260.

      12 Chen, W.H., Lu, G., Chen, X. et al. (2017). OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 45: D940–D944.

      13 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Res. 24: 132–141.

      14 Chow, R.D., Wang, G., Ye, L. et al. (2019). in vivo profiling of metastatic double knockouts through CRISPR‐Cpf1 screens. Nat. Methods 16: 405–408.

      15 Cohen, J. (2019). CRISPR patent fight revived. Science 365: 15–16.

      16 De Caneva, A., Porro, F., Bortolussi, G. et al. (2019). Coupling AAV‐mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5.

      17 De Groot, R., Luthi, J., Lindsay, H. et al. (2018). Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens. Mol. Syst. Biol. 14: e8064.

      18 Doench, J.G. (2018). Am i ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19: 67–80.

      19 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.

      20 Dong, M.B., Wang, G., Chow, R.D. et al. (2019). Systematic immunotherapy target discovery using genome‐scale in vivo CRISPR screens in CD8 T cells. Cell 178: 1189–1204.e23.

      21 Ebright, R.Y., Lee, S., Wittner, B.S. et al. (2020). Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367: 1468–1473.

      22 Erard, N., Knott, S.R.V., and Hannon, G.J. (2017). A CRISPR resource for individual, combinatorial, or multiplexed gene knockout. Mol. Cell 67: 348–354. e4.

      23 Feldman, D., Singh, A., Schmid‐Burgk, J.L. et al. (2019). Optical pooled screens in human cells. Cell 179: 787–799. e17.

      24 Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G. (2019). Guide RNA modification as a way to improve CRISPR/Cas9‐based genome‐editing systems. Biochimie 167: 49–60.

      25 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nat. Biotechnol. 31: 822–826.

      26 Ghandi, M., Huang, F.W., Jane‐Valbuena, J. et al. (2019). Next‐generation characterization of the cancer cell line encyclopedia. Nature 569: 503–508.

      27 Giladi, A., Paul, F., Herzog, Y. et al. (2018). Single‐cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20: 836–846.

      28 Ginn, S.L., Amaya, A.K., Liao, S.H.Y. et al. (2020). Efficient in vivo editing of OTC‐deficient patient‐derived primary human hepatocytes. JHEP Rep 2: 100065.

      29 Goncalves, E., Thomas, M., Behan, F.M. et al. (2020). Minimal genome‐wide human CRISPR‐Cas9 library. bioRxiv https://genomebiology.biomedcentral.com/articles/10.1186/s13059‐021‐02268‐4.

      30 Hart, T., Chandrashekhar, M., Aregger, M. et al. (2015). High‐resolution CRISPR screens reveal fitness genes and genotype‐specific cancer liabilities. Cell 163: 1515–1526.

      31 Horlbeck, M.A., Xu, A., Wang, M. et al. (2018). Mapping the genetic landscape of human cells. Cell 174: 953–967. e22.

      32 Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832.

      33 Jaitin, D. A., Weiner, A., Yofe, I., Lara‐Astiaso, D., Keren‐Shaul, H., David, E., Salame, T. M., Tanay, A., Van Oudenaarden, A. & Amit, I. 2016. Dissecting immune circuits by linking CRISPR‐pooled screens with single‐cell RNA‐Seq. Cell, 167, 1883–1896 e15.

      34 Joberty, G., Falth‐Savitski, M., Paulmann, M. et al. (2020). A tandem guide RNA‐based strategy for efficient CRISPR gene editing of cell populations with low heterogeneity of edited alleles. The CRISPR J. https://doi.org/10.1089/crispr.2019.0064.

      35 Jost, M., Chen, Y., Gilbert, L.A. et al. (2017). Combined CRISPRi/a‐based chemical genetic screens reveal that Rigosertib is a microtubule‐destabilizing agent. Mol. Cell 68: 210–223. e6.

      36 Kamens, J. (2015). The addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res. 43: D1152–D1157.

      37 Katigbak, A., Cencic, R., Robert, F. et al. (2016). A CRISPR/Cas9 functional screen identifies rare tumor suppressors. Sci. Rep. 6: 38968.

      38 Kim, S., Kim, D., Cho, S.W. et al. (2014). Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24: 1012–1019.

      39 Kim, D., Luk, K., Wolfe, S.A., and Kim, J.S. (2019). Evaluating and enhancing target specificity of gene‐editing nucleases and deaminases. Annu. Rev. Biochem. 88: 191–220.

      40 Kimberland, M.L., Hou, W., Alfonso‐Pecchio, A. et al. (2018). Strategies for controlling CRISPR/Cas9 off‐target effects and biological variations in mammalian genome editing experiments. J. Biotechnol. 284: 91–101.

      41 Kodama, M., Kodama, T., Newberg, J.Y. et al. (2017). in vivo loss‐of‐function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 114: E7301–E7310.

      42 Labun, K., Montague, T.G., Krause, M. et al. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47: W171–W174.

      43 Lafleur, M.W., Nguyen, T.H., Coxe, M.A. et al. (2019). A CRISPR‐Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10: 1668.

      44 Le Sage, C., Lawo, S., and Cross, B.C.S. (2020). CRISPR: a screener's guide. SLAS Discov 25: 233–240.

      45 Li, K., Liu, Y., Cao, H. et al. (2020). Interrogation of enhancer function by enhancer‐targeting CRISPR epigenetic editing. Nat. Commun. 11: 485.

      46 Liang, X., Potter, J., Kumar, S. et al. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208: 44–53.

      47 Lin, Y., Cradick, T.J., Brown, M.T. et al. (2014). CRISPR/Cas9 systems have off‐target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42: 7473–7485.

      48 Liu, G., Zhang, Y., and Zhang, T. (2020). Computational approaches for effective CRISPR guide RNA design and evaluation. Comput. Struct. Biotechnol. J. 18: 35–44.

      49 Lu, Q., Livi, G.P., Modha, S. et al. (2017). Applications of CRISPR


Скачать книгу