Против богов. Укрощение риска. Питер Бернстайн
Читать онлайн книгу.на лампу, свисавшую с потолка. Порывы сквозняка раскачивали ее то сильнее, то слабее. Он заметил, что все колебания совершались за один и тот же промежуток времени независимо от величины амплитуды. Результатом этого случайного наблюдения стало использование маятника для производства часов. За тридцать лет среднесуточная ошибка таких часов была снижена с пятнадцати минут до десяти секунд и менее. Это был союз времени и технологии. Таков был стиль жизни Галилео.
Около сорока лет спустя, уже будучи Первым и Экстраординарным Математиком Пизанского университета и Математиком Его светлости Козимо И, Великого герцога Тосканского, он написал короткое эссе об игре, «чтобы угодить ему, приказавшему описать, что мне пришло в голову об этой проблеме»17. Эссе называлось «Sopra le Scoperte dei Dadi» («Об игре в кости»). Использование итальянского вместо латыни указывает на то, что Галилео не слишком уважал тему своей работы и считал ее не стоящей серьезного обсуждения. Создается впечатление, что он без энтузиазма работал над очередным малопрестижным заданием, полученным от хозяина, Великого герцога, пожелавшего увеличить свои шансы за игорным столом.
При написании этого эссе Галилео удалось использовать работу Кардано, хотя до ее публикации оставалось еще сорок лет. Флоренс Найтингейл Давид (David), историк и статистик, предположил, что Кардано так долго размышлял над этими проблемами, что непременно должен был обсуждать их с друзьями. Более того, он был популярным лектором. Так что математики имели возможность хорошо познакомиться с содержанием «Liber de Ludo Aleae», даже не читая саму книгу18.
Подобно Кардано, Галилео занялся анализом результатов, получаемых при бросании одной или нескольких костей, описал общие выводы о частоте различных комбинаций и типы исходов. Между прочим, он утверждал, что использовал методологию, доступную любому математику. В частности, основанная на понятии случайности концепция вероятности настолько прочно утвердилась к 1623 году, что Галилео полагал, что он здесь мало что способен добавить.
Однако еще оставалось широкое поле для открытий. Идеи о вероятности и риске развивались быстрыми темпами, а интерес к этим проблемам через Францию распространился на Швейцарию, Германию и Англию.
Франция, например, в течение XVII и XVIII веков испытала настоящий математический бум, герои которого пошли значительно дальше экспериментов Кардано с бросанием костей. Успехи вычислительных методов и алгебры привели к бурному развитию абстрактных математических понятий и обеспечили обоснование многих практических приложений вероятности – от страхования и инвестирования до таких, казалось бы, далеких от математики предметов, как медицина, наследственность, поведение молекул, стратегия и тактика военных действий и предсказание погоды.
Первым шагом была разработка измерительных методов, пригодных для определения степени упорядоченности, которая может скрываться в неопределенном будущем. Попытки разработать такие методы впервые были предприняты еще в XVII веке. В 1619 году,