Discover Entdecke Découvrir Astronomie - Apokalypse Der Weg in die Geheimnisse des Anfangs und des Ende. Heinz Duthel

Читать онлайн книгу.

Discover Entdecke Découvrir Astronomie - Apokalypse Der Weg in die Geheimnisse des Anfangs und des Ende - Heinz Duthel


Скачать книгу
dass eine Grundbeobachtung ausreiche, um dann durch reines Nachdenken das Wesen der Natur zu verstehen. Mit dieser Denkweise konnte man aber kaum quantitative Aussagen über die Natur treffen. Man wusste beispielsweise, dass tendenziell leichte Materiale wie Holz auf dem Wasser schwimmen, wobei schwere Stoffe wie Metall sinken. Wieso aber konnte beispielsweise ein Goldbecher, der ja aus einem Schwermetall besteht, mit der Öffnung nach oben auf der Wasseroberfläche schwimmen? Schon Archimedes entdeckte das nach ihm benannte Archimedische Prinzip, das er mathematisch formulieren konnte, welches aber in Vergessenheit geriet. Es besagt, dass auf jeden Körper im Wasser eine Auftriebskraft wirkt, die genau so groß ist, wie die Gewichtskraft des vom Körper verdrängten Wassers. Solange also der Goldbecher eine Wassermenge verdrängt, die schwerer ist, als der Becher selbst, schwimmt dieser an der Oberfläche. Dieses Prinzip lässt sich auf jede beliebige Flüssigkeit und jeden Stoff verallgemeinern und ermöglicht präzise Berechnungen in zahlreichen Anwendungsgebieten. So erklärt es, weshalb große Schiffe mit einer Masse von Tausenden von Tonnen nicht untergehen. Die Queen Mary 2 beispielsweise verdrängt bei einer Tauchtiefe von nur knapp 10 Metern so viel Wasser, dass die resultierende Auftriebskraft ihre Gewichtskraft ihrer bis zu 150.000 Tonnen im beladenen Zustand kompensieren kann, was rein intuitiv unglaublich erscheint.

      Vor allem seit dem 17. Jahrhundert hat sich die mathematische Beschreibung der Natur als exakteste Methode der Naturwissenschaft entwickelt. Manche mathematische Methoden wurden speziell für die Anwendung entwickelt, andere waren in der Mathematik schon lange bekannt, bevor sich ein Anwendungsgebiet erschloss. Immanuel Kant betrachtete die Mathematik in seinen Überlegungen zu den Naturwissenschaften als Grundstruktur und Inhalt der Naturlehre:

      „Ich behaupte aber, daß in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne, als darin Mathematik anzutreffen ist.“

      – Immanuel Kant: Metaphysische Anfangsgründe der Naturwissenschaft, A VIII – (1786)

      Obwohl die Mathematik nicht hauptsächlich den Naturwissenschaften, sondern den Struktur- und manchmal den Geisteswissenschaften zugeordnet wird, ist sie in den Ingenieur- und Naturwissenschaften das mächtigste Instrument zur Beschreibung der Natur und Bestandteil der meisten Modelle. Aus diesem Grund wird sie oft als Sprache der Naturwissenschaft bezeichnet.

      Hypothesen– und Theoriebildung

      Wird einer Aussage über einen Naturprozess oder einer ihrer Eigenschaften Gültigkeit unterstellt, so bezeichnet man diese als Hypothese, solange noch keine empirischen Belege für die Richtigkeit vorhanden sind. Hypothesen werden meist als Vermutungen aufgestellt und diskutiert, um ihre Plausibilität aus verschiedenen Betrachtungsweisen zu prüfen und gegebenenfalls eine empirische Untersuchung vorzuschlagen. Wird eine Hypothese schließlich experimentell überprüft und bewährt sich, so spricht man von einer bestätigten Hypothese.

      Ein System aus vielen bestätigten, allgemein anerkannten und unter sich widerspruchsfreien Aussagen wird als Theorie bezeichnet. Jede Theorie baut auf bestimmten Forderungen oder Grundsätzen auf, die auch Postulate (z. B. Einsteinsche Postulate) oder Axiome (z. B. Newtonsche Axiome) genannt werden. Man geht davon aus, dass diese durch kein weiteres, allgemeineres Prinzip hergeleitet werden können. Eine aussagekräftige Theorie zeichnet sich vor allem durch die Beschreibung und Erklärung von möglichst vielen Naturbeobachtungen durch eine stark reduzierte Anzahl solcher fundamentalen Forderungen aus. Sehr gut belegte und zentrale Aussagen einer bewährten Theorie werden vor allem in der Physik als Naturgesetze bezeichnet. Diese sind größtenteils mathematisch formuliert und beinhalten sogenannte Naturkonstanten – wichtige Messwerte, die sich räumlich und zeitlich nicht verändern. Da die Theorie ein komplexes Konstrukt einerseits mathematisch-logischer Strukturen sowie andererseits empirisch verifizierter Sachverhalte ist und selbst aus mehreren, in sich konsistenten Theorien bestehen kann, spricht man oft von einem Theoriegebäude.

      Die Wissenschaftsgemeinde befindet sich in einem umfangreichen, dynamischen Prozess, in dem empirische Daten gesammelt, ausgewertet, diskutiert, interpretiert und aus gewonnenen Erkenntnissen Theorien entwickelt werden. Dabei werden bestehende Theorien immer wieder neu in Frage gestellt, durch neue experimentelle Befunde überprüft, angepasst oder bei großen Mängeln verworfen und schließlich durch bessere Theorien abgelöst.

      Die Astronomie (altgriechisch ἄστρον ástron ‚Stern‘ und νόμος nómos ‚Gesetz‘) untersucht durch systematische Beobachtung (beobachtende Astronomie) von Himmelskörpern wie Planeten, Sterne oder Galaxien den Aufbau und die Entwicklung des Universums. Als eine der ältesten Wissenschaften beschäftigt und fasziniert sie den Naturwissenschaftler wie auch den Laien bis heute. Für ein Verständnis der Abläufe des Himmels greift sie hauptsächlich auf Erkenntnisse der Physik und Methoden der Mathematik zurück. Ihre technische Anwendung ermöglichte im 20. Jahrhundert die Raumfahrt. In ihrer Vielseitigkeit grenzt sie aber auch an philosophische Fragestellungen nach dem Ursprung und der Zukunft des Universums im Teilbereich der Kosmologie.

      Die Geowissenschaften (altgriechisch γῆ gé ‚Erde‘) befassen sich mit der Entstehung, der Entwicklung und der heutigen Gestalt der Erde. Die Geodäsie ermöglichte die Abbildung der Erdoberfläche und die Erfassung von wichtigen Daten für Geoinformationssysteme, die heute zahlreiche Anwendungsmöglichkeiten haben. Darüber hinaus erforscht die Wirtschaftsgeologie die Vorkommen von Naturressourcen und Möglichkeiten ihres Abbaus. Weitere Teilbereiche der Geowissenschaften machen nicht nur die im Alltag bekannten Anwendungen wie die Wettervorhersage möglich, sondern erforschen Vorgänge in der Plattentektonik und der Erdatmosphäre, um Frühwarnsysteme zu entwickeln, die präventive Maßnahmen bei bevorstehenden Naturkatastrophen ermöglichen sollen. Dabei wird oft auf Erkenntnisse der Physik und der Chemie zurückgegriffen.

      Die Biologie (altgriechisch βίος bíos ‚Leben‘ und λόγος lógos ‚Lehre‘) und im weiteren Sinne die Biowissenschaften befassen sich mit lebenden Organismen sowie abiotischen Faktoren, die vorhandenes Leben bedingen und beeinflussen. Im Fachbereich der Ökologie werden Vorgänge im Tier- und Pflanzenreichreich und ihre Beziehung zur Umwelt untersucht. Aufbau und Funktion des lebenden Organismus werden in der Physiologie auf verschiedenen Ebenen erforscht. Die Zell- und Molekularbiologie verwendet chemische und physikalische Gesetzmäßigkeiten, um die grundlegenden Prozesse des Stoffwechsels zu beschreiben. Andererseits formuliert sie übergreifende Gesetzmäßigkeiten wie die Entwicklung des Lebens in der Evolutionsbiologie.

      Die Chemie (altgriechisch χημεία chemeia ‚[Kunst der Metall]Gießerei‘) erforscht ausgehend von den Elementen und ihren chemischen Bindungen den Aufbau, die Eigenschaften sowie Umwandlungen von chemischen Stoffen. In der organischen Chemie werden kohlenstoffhaltige Verbindungen untersucht, die in lebenden Organismen eine wichtige Rolle spielen. Die Anorganische Chemie befasst sich dagegen mit kohlenstofffreien Verbindungen oder Elementen wie Metallen oder Salzen. Zu einer tiefergehenden Erklärung der Verbindungen werden Modelle des Atoms und der Elektronenhülle aus der Physik verwendet.

      Die Physik (altgriechisch φυσική physikē ‚Naturforschung‘) ist die grundlegendste der Naturwissenschaften und untersucht allgemein Vorgänge von Materie und Energie in Raum und Zeit. Sie beschreibt die Dynamik von starren Körpern, Flüssigkeiten, Strömungen, Wärme und elektromagnetischen Phänomenen, indem sie sämtliche Beobachtungen auf mikroskopische Eigenschaften der Atome oder Elementarteilchen zurückführt. Die Experimentalphysik spezialisiert sich auf die Realisierung und Durchführung von Versuchen und schafft eine empirische Basis für das Verständnis physikalischer Vorgänge. Ergänzend dazu werden in der theoretischen Physik mathematische Modelle und Formalismen entwickelt, um eine präzise und vereinheitlichte Beschreibung der elementarsten Naturprozesse zu ermöglichen. Auf diese Weise schafft die Physik die Grundlage für viele angewandte und interdisziplinäre Wissenschaften.

      Interdisziplinäre Fachbereiche

      Mechanismen in der Natur sind oft so komplex, dass ihre Untersuchung ein fächerübergreifendes Wissen erfordert. Mit zunehmender Spezialisierung gewinnt die Kompetenz, verschiedene Fachbereiche effektiv miteinander zu verbinden mehr an Bedeutung. So entstehen interdisziplinäre Forschungsbereiche, für die mit der Zeit auch gesonderte Studiengänge angeboten werden. Neben dem klassischen, interdisziplinären Bereich der Biochemie haben sich in


Скачать книгу