Handbook of Aggregation-Induced Emission, Volume 2. Группа авторов
Читать онлайн книгу.Zhang, X.Q., Chi, Z.G., Xu, B.J. et al. (2012). Multifunctional organic fluorescent materials derived from 9,10‐distyrylanthracene with alkoxyl endgroups of various lengths. Chemical Communications 48 (88): 10895–10897.
32 32 Liu, W., Wang, Y.L., Bu, L.Y. et al. (2013). Chain length‐dependent piezofluorochromic behavior of 9,10‐bis(p‐alkoxystyryl)anthracenes. Journal of Luminescence 143: 50–55.
33 33 Bu, L.Y., Sun, M.X., Zhang, D.T. et al. (2013). Solid‐state fluorescence properties and reversible piezochromic luminescence of aggregation‐induced emission‐active 9,10‐bis[(9,9‐dialkylfluorene‐2‐yl)vinyl]anthracenes. Journal of Materials Chemistry C 1 (10): 2028–2035.
34 34 Bu, L.Y., Li, Y.P., Wang, J.F. et al. (2013). Synthesis and piezochromic luminescence of aggregation‐enhanced emission 9,10‐bis(N‐alkylcarbazol‐2‐yl‐vinyl‐2)anthracenes. Dyes and Pigments 99 (3): 833–838.
35 35 Wang, Y.L., Liu, W., Bu, L.Y. et al. (2013). Reversible piezochromic luminescence of 9,10‐bis[(N‐alkylcarbazol‐3‐yl)vinyl]anthracenes and the dependence on N‐alkyl chain length. Journal of Materials Chemistry C 1 (4): 856–862.
36 36 Zheng, M., Sun, M.X., Li, Y.P. et al. (2014). Piezofluorochromic properties of AIE‐active 9,10‐bis(N‐alkylphenothiazin‐3‐yl‐vinyl‐2)anthracenes with different length of alkyl chains. Dyes and Pigments 102: 29–34.
37 37 Zhang, X.Q., Ma, Z.Y., Yang, Y. et al. (2014). Influence of alkyl length on properties of piezofluorochromic aggregation induced emission compounds derived from 9,10‐bis[(N‐alkylphenothiazin‐3‐yl)vinyl]anthracene. Tetrahedron 70 (4): 924–929.
38 38 Sun, Q.K., Liu, W., Ying, S.A. et al. (2015). 9,10‐Bis(N‐alkylindole‐3‐yl‐vinyl‐2)anthracenes as a new series of alkyl length‐dependent piezofluorochromic aggregation‐induced emission homologues. RSC Advances 5 (89): 73046–73050.
39 39 Xiong, Y., Yan, X.L., Ma, Y.W. et al. (2015). Regulating the piezofluorochromism of 9,10‐bis(butoxystyryl)anthracenes by isomerization of butyl groups. Chemical Communications 51 (16): 3403–3406.
40 40 Liu, W., Wang, Y.L., Sun, M.X. et al. (2013). Alkoxy‐position effects on piezofluorochromism and aggregation‐induced emission of 9, 10‐bis(alkoxystyryl)anthracenes. Chemical Communications 49 (54): 6042–6044.
41 41 Balasaravanan, R. and Siva, A. (2016). Synthesis, characterization and aggregation induced emission properties of anthracene based conjugated molecules. New Journal of Chemistry 40 (6): 5099–5106.
42 42 Chen, J.‐R., Zhao, J., Xu, B.‐J. et al. (2016). An AEE‐active polymer containing tetraphenylethene and 9,10‐distyrylanthracene moieties with remarkable mechanochromism. Chinese Journal of Polymer Science 35 (2): 282–292.
43 43 Duraimurugan, K., Sivamani, J., Sathiyaraj, M. et al. (2016). Piezoflurochromism and aggregation induced emission properties of 9,10‐bis (trisalkoxystyryl) anthracene derivatives. Journal of Fluorescence 26 (4): 1211–1218.
44 44 Qi, Q.K., Li, C., Liu, X.G. et al. (2017). Solid‐state photoinduced luminescence switch for advanced anticounterfeiting and super‐resolution imaging applications. Journal of the American Chemical Society 139 (45): 16036–16039.
45 45 Guan, W.J., Lu, J., Zhou, W.J. et al. (2014). Aggregation‐induced emission molecules in layered matrices for two‐color luminescence films. Chemical Communications 50 (80): 11895–11898.
46 46 Zhang, J.B., Chen, J.L., Xu, B. et al. (2013). Remarkable fluorescence change based on the protonation–deprotonation control in organic crystals. Chemical Communications 49 (37): 3878–3880.
47 47 Ma, S.Q., Zhang, J.B., Liu, Y.J. et al. (2017). Direct observation of the symmetrical and asymmetrical protonation states in molecular crystals. Journal of Physical Chemistry Letters 8 (13): 3068–3072.
48 48 Shao, B., Jin, R.H., Li, A.S. et al. (2019). Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. Journal of Materials Chemistry C 7 (11): 3263–3268.
49 49 Niu, C.X., You, Y., Zhao, L. et al. (2015). Solvatochromism, reversible chromism and self‐assembly effects of heteroatom‐assisted aggregation‐induced enhanced emission (AIEE) compounds. Chemistry—A European Journal 21 (40): 13983–13990.
50 50 Dong, Y.J., Xu, B., Zhang, J.B. et al. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. Crystengcomm 14 (20): 6593–6598.
51 51 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2017). Tuning the structures and photophysical properties of 9,10‐distyrylanthrance (DSA) via fluorine substitution. New Journal of Chemistry 41 (10): 4220–4233.
52 52 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2015). Influence of halogen atoms on the structures and photophysical properties of 9,10‐distyrylanthracene (DSA). CrystEngComm 17 (47): 9228–9239.
53 53 Zhang, J.B., Ma, S.Q., Fang, H.H. et al. (2017). Insights into the origin of aggregation enhanced emission of 9,10‐distyrylanthracene derivatives. Materials Chemistry Frontiers 1 (7): 1422–1429.
54 54 Chen, J.L., Ma, S.Q., Xu, B. et al. (2013). Molecular crystals based on 9,10‐distyrylanthracene derivatives with high solid state fluorescence efficiency and uniaxial orientation induced by supramolecular interactions. Chinese Science Bulletin 58 (22): 2747–2752.
55 55 Wang, L.J., Xu, B., Zhang, J.B. et al. (2013). Theoretical investigation of electronic structure and charge transport property of 9,10‐distyrylanthracene (DSA) derivatives with high solid‐state luminescent efficiency. Physical Chemistry Chemical Physics 15 (7): 2449–2458.
56 56 Zhang, J.B., Xu, B., Chen, J.L. et al. (2014). An organic luminescent molecule: What will happen when the “butterflies” come together? Advanced Materials 26 (5): 739–745.
57 57 Li, A.S., Liu, Y.J., Han, L. et al. (2019). Pressure‐induced remarkable luminescence‐changing behaviours of 9,10‐distyrylanthracene and its derivatives with distinct substituents. Dyes and Pigments 161: 182–187.
58 58 Chen, J.L., Ma, S.Q., Zhang, J.B. et al. (2015). Low‐loss optical waveguide and highly polarized emission in a uniaxially oriented molecular crystal based on 9,10‐distyrylanthracene derivatives. Acs Photonics 2 (2): 313–318.
59 59 Liu, Y.J., Ma, S.Q., Xu, B. et al. (2017). Construction and function of a highly efficient supramolecular luminescent system. Faraday Discussions 196: 219–229.
60 60 Song, N., Chen, D.‐X., Xia, M.‐C. et al. (2015). Supramolecular assembly‐induced yellow emission of 9,10‐distyrylanthracene bridged bis(pillar[5]arene)s. Chemical Communications 51 (25): 5526–5529.
61 61 Zhang, J.B., Xu, B., Chen, J.L. et al. (2013). Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation‐induced emission. Journal of Physical Chemistry C 117 (44): 23117–23125.
62 62 Xu, B., Zhang, J.B., Fang, H.H. et al. (2014). Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two‐photon absorption cross‐section. Polymer Chemistry 5 (2): 479–488.
63 63 Srujana, P. and Radhakrishnan, T.P. (2018). Impact of molecular orientation on fluorescence emission enhancement in aggregates. Materials Chemistry Frontiers 2 (4): 632–634.
64 64 Chandaluri, C.G. and Radhakrishnan, T.P. (2012). Amorphous‐to‐crystalline transformation with fluorescence enhancement and switching of molecular nanoparticles fixed in a polymer thin film. Angewandte Chemie‐International Edition 51 (47): 11849–11852.
65 65 Srujana, P. and Radhakrishnan, T.P. (2015). Extensively reversible thermal transformations of a bistable, fluorescence‐switchable molecular solid: Entry into functional molecular phase‐change materials. Angewandte Chemie‐International Edition 54 (25): 7270–7274.
66 66 Srujana, P., Gera, T., and Radhakrishnan, T.P. (2016). Fluorescence enhancement in crystals tuned by a molecular torsion angle: A model to analyze structural impact. Journal of Materials Chemistry C 4 (27): 6510–6515.
67 67