Handbook of Aggregation-Induced Emission, Volume 1. Группа авторов

Читать онлайн книгу.

Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов


Скачать книгу
Wang, J., Mei, J., Hu, R. et al. (2012). Click synthesis, aggregation‐induced emission, E/Z isomerization, self‐organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene‐cored luminogen. Journal of the American Chemical Society 134 (24): 9956–9966.

      42 42 Yang, Z., Qin, W., Leung, N. L. et al. (2016). A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C 4 (1): 99–107.

      43 43 Xiong, J.‐B., Feng, H.‐T., Sun, J.‐P. et al. (2016). The fixed propeller‐like conformation of tetraphenylethylene that reveals aggregation‐induced emission effect, chiral recognition, and enhanced chiroptical property. Journal of the American Chemical Society 138 (36): 11469–11472.

      44 44 Xiong, J.‐B., Yuan, Y.‐X., Wang, L. et al. (2018). Evidence for aggregation‐induced emission from free rotation restriction of double bond at excited state. Organic Letters 20 (2): 373–376.

      45 45 Yuan, Y.‐X., Zhang, H.‐C., Hu, M. et al. (2020). Enhanced DNA sensing and chiroptical performance by restriction of double‐bond rotation of AIE cis‐tetraphenylethylene macrocycle diammoniums. Organic Letters 22: 1836–1840.

      46 46 Debroy, P., Lindeman, S. V., and Rathore, R. (2009). A versatile synthesis of electroactive stilbenoprismands for effective binding of metal cations. The Journal of Organic Chemistry 74 (5): 2080–2087.

      47 47 Sinha, N., Stegemann, L., Tan, T. T. et al. (2017). Turn‐on fluorescence in tetra‐NHC ligands by rigidification through metal complexation: an alternative to aggregation‐induced emission. Angewandte Chemie International Edition 56 (10): 2785–2789.

      48 48 Zeng, F., Zhao, S., Jiang, Y. et al. (2017). An emissive rigid tetraphenylethylene‐based molecule and its thermal polymerization. Tetrahedron 73 (30): 4487–4492.

      49 49 Qian, H., Cousins, M. E., Horak, E. H. et al. (2017). Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation‐induced emission. Nature Chemistry 9 (1): 83–87.

      50 50 Kokado, K. and Sada, K. (2019). Consideration of molecular structure in the excited state to design new luminogens with aggregation‐induced emission. Angewandte Chemie 131 (26): 8724–8731.

      51 51 Peng, X.‐L., Ruiz‐Barragan, S., Li, Z.‐S. et al. (2016). Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. Journal of Materials Chemistry C 4 (14): 2802–2810.

      52 52 Crespo‐Otero, R., Li, Q., and Blancafort, L. (2019). Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chemistry–An Asian Journal 14 (6): 700–714.

      53 53 Ding, W. L., Peng, X. L., Cui, G. L. et al. (2019). Potential‐energy surface and dynamics simulation of THBDBA: an annulated tetraphenylethene derivative combining aggregation‐induced emission and switch behavior. ChemPhotoChem 3 (9): 814–824.

      54 54 Zhao, G.‐J., Han, K.‐L., Lei, Y.‐B. et al. (2007). Ultrafast excited‐state dynamics of tetraphenylethylene studied by semiclassical simulation. The Journal of chemical physics 127 (9): 094307.

      55 55 Prlj, A., Došlić, N., and Corminboeuf, C. (2016). How does tetraphenylethylene relax from its excited states? Physical Chemistry Chemical Physics 18 (17): 11606–11609.

      56 56 Gao, Y.‐J., Chang, X.‐P., Liu, X.‐Y. et al. (2017). Excited‐state decay paths in tetraphenylethene derivatives. The Journal of Physical Chemistry A 121 (13): 2572–2579.

      57 57 Cai, Y., Du, L., Samedov, K. et al. (2018). Deciphering the working mechanism of aggregation‐induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science 9 (20): 4662–4670.

      58 58 Kokado, K., Machida, T., Iwasa, T. et al. (2018). Twist of C=C bond plays a crucial role in the quenching of AIE‐active tetraphenylethene derivatives in solution. The Journal of Physical Chemistry C 122 (1): 245–251.

      59 59 Tasso, T. T., Furuyama, T., and Kobayashi, N. (2015). Dinitriles bearing AIE‐active moieties: synthesis, E/Z isomerization, and fluorescence properties. Chemistry–A European Journal 21 (12): 4817–4824.

      60 60 Chung, J. W., Yoon, S. J., An, B. K. et al. (2013). High‐contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α‐cyanostilbenic moiety. The Journal of Physical Chemistry C 117 (21): 11285–11291.

      61 61 Yamamoto, N. (2018). Mechanisms of aggregation‐induced emission and photo/thermal E/Z isomerization of a cyanostilbene derivative: theoretical insights. The Journal of Physical Chemistry C 122 (23): 12434–12440.

      62 62 Duan, P., Yanai, N., Kurashige, Y. et al. (2015). Aggregation‐induced photon upconversion through control of the triplet energy landscapes of the solution and solid states. Angewandte Chemie International Edition 54 (26): 7544–7549.

      63 63 Shi, J., Aguilar Suarez, L. E., Yoon, S. J. et al. (2017). Solid state luminescence enhancement in π‐conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. The Journal of Physical Chemistry C 121 (41): 23166–23183.

      64 64 Tong, H., Dong, Y., Hong, Y. et al. (2007). Aggregation‐induced emission: effects of molecular structure, solid‐state conformation, and morphological packing arrangement on light‐emitting behaviors of diphenyldibenzofulvene derivatives. The Journal of Physical Chemistry C 111 (5): 2287–2294.

      65 65 Gao, X., Peng, Q., Niu, Y. et al. (2012). Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. Physical Chemistry Chemical Physics 14 (41): 14207–14216.

      66 66 Li, Q. and Blancafort, L. (2013). A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chemical Communications 49 (53): 5966–5968.

      67 67 Ruiz‐Barragan, S., Morokuma, K., and Blancafort, L. (2015). Conical intersection optimization using composed steps inside the ONIOM (QM: MM) scheme: CASSCF: UFF implementation with microiterations. Journal of Chemical Theory and Computation 11 (4): 1585–1594.

      68 68 Wang, B., Wang, X., Wang, W. et al. (2016). Exploring the mechanism of fluorescence quenching and aggregation‐induced emission of a phenylethylene derivative by QM (CASSCF and TDDFT) and ONIOM (QM: MM) calculations. The Journal of Physical Chemistry C 120 (38): 21850–21857.

      69 69 Jiang, M., He, Z., Zhang, Y. et al. (2017). Development of benzylidene‐methyloxazolone based AIEgens and decipherment of their working mechanism. Journal of Materials Chemistry C 5 (29): 7191–7199.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7RxwUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGlu
Скачать книгу