Handbook of Aggregation-Induced Emission, Volume 3. Группа авторов

Читать онлайн книгу.

Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов


Скачать книгу
a red‐emissive AIE fluorophore: a) in a diluted solution of a good solvent; b) in a solvent–nonsolvent mixture at the same molecular concentration; and c) in the solid state.

      Source: Reprinted with permission from Ref. [41]. Copyright (2018) John Wiley and Sons.

Schematic illustration of potential energy diagram for generic FMRs and the respective emissions in a highly viscous environment that favors radiative de-excitation from the LE state and in a low viscous solvent that promotes the formation of the TICT state.

      Photographs were taken from solutions containing the same FMR molar concentration.

      These FMRs are therefore useful for optical sensing applications, e.g. when a chemical stimulus such as the exposure to VOCs determines a change of either the polarity or the viscosity of the polymer matrix, thus effectively providing a clear change of the emission feature of the embedded FMR [46, 48, 49]. More than that, if the polymer matrix is completely apolar such as the majority of the commodity plastics, this would be helpful in maximizing the fluorescence intensity of the rotor, the emission from the LE state being highly favored. Many applications such as those in the energy field would certainly benefit from such a feature.

      In the introduction chapter, it was already reported that polymer films are the best candidate to promote the AIE technology also in the field of sensing. Notably, AIE polymers have many advantages over low‐mass AIEgens, such as processability, easy functionalization, good thermal stability, and possessing structural complexity and phase ordering that can be easily modulated by external solicitations [29, 30, 50]. The plastic matrix of the films actually allowed a prompt response to external solicitations such as a mechanical, a thermal, or a chemical solicitation by transferring the energy associated with the stimulus to the AIEgen molecules embedded in the film. Optical sensing is what we can define as the property of a traditional device to detect events and provide a corresponding optical output. A “good” optical sensor has to provide a fast change in optical response under stimuli of its environment by coming back to the pristine state in short time and by completely recovering the starting energy level. This is true if a reversible response is desirable or in the case of a reusable device. Quite often, in order to determine an external solicitation that could affect the structural integrity of a material, an irreversible optical response is highly advisable. This is, for example, the case of optical sensors based on doped polymer films utilized in smart and intelligent packaging, i.e. to monitor potential external contamination that could affect and deteriorate the quality of the contained object, most often food. According to the nature of the AIE aggregates in a poorly emissive amorphous or highly luminescent crystalline states, an OFF–ON or ON–OFF optical response can be obtained. In the following paragraphs, examples from the literature are provided in terms of the preparation and characterization of AIE‐doped polymer films as optical sensors able to detect mechanical stress (i.e. called mechanochromic) [16, 51], thermal solicitations (i.e. called thermochromic) [52], and the exposure toward VOCs (i.e. called vapochromic) [53].

      3.3.1 Mechanochromic AIE‐doped Polymer Films

      Mechanochromic AIEgens show sensitive photophysical response to external stimulation, manifested in their emission color, intensity, as well as the lifetime. The underlying reason is the change in their molecular packing, conformation, and intermolecular interaction induced by the external forces. AIEgens are enabled to act as fluorescent probes to visualize the structural and morphological variations occurred in materials due to any possible contamination event that possibly changes the extent of their aggregation. On this account, AIEgens have been effectively utilized as mechanochromic fluorescent additives in commodity polymers [54] and first attempts for the detection of mechanical stimuli via an ON–OFF optical output are summarized below.

Schematic <hr><noindex><a href=Скачать книгу