Handbook of Aggregation-Induced Emission, Volume 3. Группа авторов
Читать онлайн книгу.YQ, Zhuo Y, et al. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Anal. Chem. 2019; 91(5):3710–6.
43 43 Liu JL, Zhang JQ, Tang ZL, Zhuo Y, Chai YQ, Yuan R. Near‐Infrared Aggregation‐Induced Enhanced Electrochemiluminescence from Tetraphenylethylene Nanocrystals: A New Generation of ECL Emitters. Chem. Sci. 2019; 10(16):4497–501.
44 44 Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens. Bioelectron. 2018; 100:28–34.
45 45 Zu Y, Bard AJ. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in The Ruthenium Tris(2,2’)Bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem. 2000; 72(14):3223–32.
46 46 Kanoufi F, Zu Y, Bard AJ. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru (bpy) 32+ System. J. Phys. Chem. B. 2001; 105:210–6.
47 47 Forster RJ, Hogan CF. Electrochemiluminescent Metallopolymer Coatings: Combined Light and Current Detection in Flow Injection Analysis. Anal. Chem. 2000; 72(22):5576–82.
48 48 Downey TM, Nieman TA. Chemiluminescence Detection Using Regenerable Tris(2,2’‐Bipyridyl)Ruthenium(II) Immobilized in Nafion. Anal. Chem. 1992; 64(3):261–8.
49 49 Knight AW, Greenway GM. Relationship Between Structural Attributes and Observed Electrogenerated Chemiluminescence (ECL) Activity of Tertiary Amines as Potential Analytes for the Tris(2,2‐Bipyridine)Ruthenium(II) ECL Reaction. A Review. Analyst. 1996; 121:101R.
50 50 White HS, Bard AJ. Electrogenerated Chemiluminescence and Chemiluminescence of the Ru(2,21‐bpy)32+‐S2o82‐ System in Acetonitrile‐Water Solutions. J. Am. Chem. Soc. 1982; 104(25):6891–5.
51 51 Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, et al. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew. Chem. Int. Ed. 2019; 58(18):5915–9.
52 52 Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation‐Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017; 139(41):14605–10.
53 53 Aliprandi A, Mauro M, Cola L De. Controlling and Imaging Biomimetic Self‐Assembly. Nat. Chem. 2016; 8:10–5.
54 54 Aliprandi A, Genovese D, Mauro M, De Cola L. Recent Advances in Phosphorescent Pt(II) Complexes Featuring Metallophilic Interactions: Properties and Applications. Chem. Lett. 2015; 44(9):1152–69.
55 55 Genovese D, Aliprandi A, Prasetyanto EA, Mauro M, Hirtz M, Fuchs H, et al. Mechano‐ and Photochromism from Bulk to Nanoscale: Data Storage on Individual Self‐Assembled Ribbons. Adv. Funct. Mater. 2016; 26(29):5271–8.
56 56 Ong JX, Yap SQ, Wong DYQ, Chin CF, Ang WH. Platinum(IV) Carboxylate Prodrug Complexes as Versatile Platforms for Targeted Chemotherapy. Chim. Int. J. Chem. 2015; 69(3):100–3.
57 57 Gao TB, Zhang JJ, Yan RQ, Cao DK, Jiang D, Ye D. Aggregation‐Induced Electrochemiluminescence from a Cyclometalated Iridium(III) Complex. Inorg. Chem. 2018; 57(8):4310–6.
58 58 Kerr E, Doeven EH, Wilson DJD, Hogan CF, Francis PS. Considering the Chemical Energy Requirements of The Tri‐N‐Propylamine Coreactant Pathways for the Judicious Design of New Electrogenerated Chemiluminescence Detection Systems. Analyst. 2016; 141:62–9.
59 59 Chang Y‐L, Palacios RE, Fan F‐RF, Bard AJ, Barbara PF. Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles. J. Am. Chem. Soc. 2008; 130(28):8906–7.
60 60 Wu C, Szymanski C, McNeill J. Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles. Langmuir. 2006; 22(7):2956–60.
61 61 Venkatanarayanan A, Spehar‐Délèze AM, Dennany L, Pellegrin Y, Keyes TE, Forster RJ. Ruthenium Aminophenanthroline Metallopolymer Films Electropolymerized from an Ionic Liquid: Deposition and Electrochemical and Photonic Properties. Langmuir. 2008; 24(19):11233–8.
62 62 Dennany L, Forster RJ, Rusling JF. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc. 2003; 125(17):5213–8.
63 63 Zhou XF, Cheng W, Compton RG. Doping of Single Polymeric Nanoparticles. Angew. Chem. Int. Ed. 2014; 53(46):12587–9.
64 64 Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double‐Enhanced Electrochemiluminescence for Detection of Single‐Nucleotide Polymorphism. Anal. Chem. 2017; 89(14):7659–66.
65 65 Ye F, Wu C, Jin Y, Chan YH, Zhang X, Chiu DT. Ratiometric Temperature Sensing with Semiconducting Polymer Dots. J. Am. Chem. Soc. 2011; 133(21):8146–9.
66 66 Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75(1):1–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19782542.
67 67 Feng Y, Dai C, Lei J, Ju H, Cheng Y. Silole‐Containing Polymer Nanodot: An Aqueous Low‐Potential Electrochemiluminescence Emitter for Biosensing. Anal. Chem. 2016; 88(1):845–50.
68 68 Dai R, Wu F, Xu H, Chi Y. Anodic, Cathodic, and Annihilation Electrochemiluminescence Emissions from Hydrophilic Conjugated Polymer Dots in Aqueous Medium. ACS. Appl. Mater. Interfaces. 2015; 7(28):15160–7.
69 69 Bertoncello P, Forster RJ. Nanostructured Materials for Electrochemiluminescence (ECL)‐Based Detection Methods: Recent Advances and Future Perspectives. Biosens. Bioelectron. 2009; 24(11):3191–200.
70 70 Suk J, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence of Organic Nanoparticles. J. Solid State Electrochem. 2011; 15(11–12):2279–91.
71 71 Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation‐Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015; 115(21):11718–940.
72 72 Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent Resonance Energy Transfer of Polymer Dots for Aptasensing. Biosens. Bioelectron. 2018; 100:28–34.
73 73 Dennany L, Hogan CF, Keyes TE, Forster RJ. Effect of Surface Immobilization on the Electrochemiluminescence of Ruthenium‐Containing Metallopolymers. Anal. Chem. 2006; 78(5):1412–7.
74 74 O’Reilly EJ, Keyes TE, Forster RJ, Dennany L. Insights into Electrochemiluminescent Enhancement Through Electrode Surface Modification. Analyst. 2013; 138(2):677–82.
75 75 Saremi M, Amini A, Heydari H. An Aptasensor for Troponin I Based on the Aggregation‐Induced Electrochemiluminescence of Nanoparticles Prepared from A Cyclometallated Iridium(III) Complex and Poly(4‐Vinylpyridine‐Co‐Styrene) Deposited on Nitrogen‐Doped Graphene. Microchim. Acta. 2019; 186(4):254.
76 76 Danis AS, Metera KL, Payne NA, Sleiman HF, Mauzeroll J. Bottom‐Up Characterization and Self‐Assembly of Electrogenerated Chemiluminescence Active Ruthenium Nanospheres. ChemElectroChem. 2019; 6(13):3499–506.
77 77 Danis AS, Odette WL, Perry SC, Canesi S, Sleiman HF, Mauzeroll J. Cuvette‐Based Electrogenerated Chemiluminescence Detection System for the Assessment of Polymerizable Ruthenium Luminophores. ChemElectroChem. 2017; 4(7):1736–43.
78 78 Nepomnyashchii AB, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence of BODIPY dyes. Acc. Chem. Res. 2012; 45(11):1844–53.
79 79 Nepomnyashchii AB, Cho S, Rossky PJ, Bard AJ. Dependence of Electrochemical and Electrogenerated Chemiluminescence Properties on the Structure of Bodipy Dyes. Unusually Large Separation Between Sequential Electron Transfers. J. Am. Chem. Soc. 2010; 132(49):17550–9.
80 80 Natarajan P, Schmittel M. 9,10‐Diarylanthracenes as Stable electrochemiluminescent Emitters in Water. J. Org. Chem. 2012; 77(19):8669–77.
81 81 Liu H, Wang L, Gao H, Qi H, Gao Q, Zhang C. Aggregation‐Induced Enhanced Electrochemiluminescence from Organic Nanoparticles of Donor–Acceptor Based Coumarin Derivatives.