Magnetic Resonance Microscopy. Группа авторов
Читать онлайн книгу.Foo, T., Vermilyea, M., Xu, M.et al. (2016). Dedicated high-performance, lightweight, low-cryogen compact 3.0T MRI system for advanced brain imaging. Proceedings of the ISMRM, Singapore.
31 31 Campbell-Washburn, A.E., Ramasawmy, R., Restivo, M.C.et al. (2019). Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293 (2): 384–393.
32 32 Panther, A., Thevathasan, G., Connell, I.et al. (2019). A dedicated head-only MRI scanner for point-of-care imaging. Proceeding of the ISMRM, Montreal.
33 33 Stainsby, J., Bindseil, G., Connell, I.et al. (2019). Imaging at 0.5T with high-performance system components. Proceeding of the ISMRM, Montreal, 1194.
34 34 Stainsby, J., Harris, C., Bindseil, G.et al. High-performance diffusion imaging on a 0,5T system. Proceedings of the ISMRM, Montreal.
35 35 Vaughan, J., Wang, B., Idiyatullin, D.et al. (2016). Progress toward a portable MRI system for human brain imaging. Proceedings of the ISMRM, Singapore.
36 36 Sheth, K.N., Mazurek, M.H., Yuen, M.M.et al. (2020). Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurology 78 (1): 41–47.
37 37 Welch, B., By, S., Chen, G.et al. (2020). Use environments and clinical feasibility of portable point-of-care bedside brain MRI. Proceedings of the ISMRM, virtual.
38 38 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). Numerically optimized design for a low-cost, lightweight 86 mT whole-brain magnet. Proceeding of the ISMRM, Montreal, Canada.
39 39 Blumler, P.and Casanova, F. (2016). Hardware developments: Halbach magnet arrays. In: Mobile NMR and MRI; Developments and Applications (eds. M. Johns, E.O. Findjonson, S. Vogt, and A. Haber), 133–155. Cambridge, UK: Royal Society of Chemistry.
40 40 Brown, M.C., Verganelakis, D.A., Mallett, M.J.et al. (2004). Surface normal imaging with a hand-held NMR device. Journal of Magnetic Resonance 169 (2): 308–312.
41 41 Danieli, E.and Blumich, B. (2013). Single-sided magnetic resonance profiling in biological and materials science. Journal of Magnetic Resonance 229: 142–154.
42 42 Van Landeghem, M., Danieli, E., Perlo, J.et al. (2012). Low-gradient single-sided NMR sensor for one-shot profiling of human skin. Journal of Magnetic Resonance 215: 74–84.
43 43 Backhouse, L., Dias, M., Gorce, J.P.et al. (2004). GARField magnetic resonance profiling of the ingress of model skin-care product ingredients into human skin in vitro. Journal of Pharmaceutical Sciences 93 (9): 2274–2283.
44 44 Greer, M., Chen, C., and Mandal, S. (2019). An easily reproducible, hand-held, single-sided, MRI sensor. Journal of Magnetic Resonance 308: 106591.
45 45 Ali, T.S., Tourell, M.C., Hugo, H.J.et al. (2019). Transverse relaxation-based assessment of mammographic density and breast tissue composition by single-sided portable NMR. Magnetic Resonance in Medicine 82 (3): 1199–1213.
46 46 Tourell, M.C., Ali, T.S., Hugo, H.J.et al. (2018). T1-based sensing of mammographic density using single-sided portable NMR. Magnetic Resonance in Medicine 80 (3): 1243–1251.
47 47 Colucci, L.A., Corapi, K.M., Li, M.et al. (2019). Fluid assessment in dialysis patients by point-of-care magnetic relaxometry. Science Translational Medicine 11 (502).
48 48 Li, M., Vassiliou, C.C., Colucci, L.A.et al. (2015). (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice. NMR in Biomedicine 28 (8): 1031–1039.
49 49 Perlo, J., Casanova, F., and Blumich, B. (2004). 3D imaging with a single-sided sensor: An open tomograph. Journal of Magnetic Resonance 166 (2): 228–235.
50 50 He, Z., He, W., Wu, J.et al. (2017). The novel design of a single-sided MRI probe for assessing burn depth. Sensors 17 (3).
51 51 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). The MR cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magnetic Resonance in Medicine 82 (5): 1946–1960.
52 52 Bhat, S.S., Fernandes, T.T., Poojar, P.et al. (2020). Low-field MRI of stroke: Challenges and opportunities. Journal of Magnetic Resonance Imaging e27324 54 (2): 372–390
53 53 Okorie, C.K., Ogbole, G.I., Owolabi, M.O.et al. (2015). Role of diffusion-weighted imaging in acute stroke management using low-field magnetic resonance imaging in resource-limited settings. The West African Journal of Radiology 22 (2): 61–66.
54 54 Fassbender, K., Grotta, J.C., Walter, S.et al. (2017). Mobile stroke units for prehospital thrombolysis, triage, and beyond: Benefits and challenges. Lancet Neurology 16 (3): 227–237.
55 55 Fassbender, K., Walter, S., Grunwald, I.Q.et al. (2020). Prehospital stroke management in the thrombectomy era. Lancet Neurology 19 (7): 601–610.
56 56 Fassbender, K., Walter, S., Liu, Y.et al. (2003). “Mobile stroke unit” for hyperacute stroke treatment. Stroke 34 (6): e44.
57 57 Grunwald, I.Q., Phillips, D.J., Sexby, D.et al. (2020). Mobile stroke unit in the UK healthcare system: Avoidance of unnecessary accident and emergency admissions. Cerebrovascular Diseases 49 (4): 388–395.
58 58 Walter, S., Ragoschke-Schumm, A., Lesmeister, M.et al. (2018). Mobile stroke unit use for prehospital stroke treatment – An update. Radiologe 58 (Suppl. 1): 24–28.
59 59 Powers, W.J., Rabinstein, A.A., Ackerson, T.et al. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50 (12): e344–e418.
60 60 Powers, W.J., Rabinstein, A.A., Ackerson, T.et al. (2018). Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49 (3): e46–e110.
61 61 Schaefer, P.W., Souza, L., Kamalian, S.et al. (2015). Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke. Stroke 46 (2): 419–424.