Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов
Читать онлайн книгу.1 Abadin, H., Ashizawa, A., Stevens, Y.W., Llados, F., Diamond, G., Sage, G., Citra, M., Quinones, A., Bosch, S.J., and Swarts, S.G. (2007). Toxicological Profile for Lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry.
2 Aleckovic, M. and Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochim. Biophys. Acta 1855: 24–42.
3 Alli, L.A. (2015). Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. Interdiscip. Toxicol. 8: 146–150.
4 Amini, P., Ettlin, J., Opitz, L., Clementi, E., Malbon, A., and Markkanen, E. (2017). An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol. Biol. 18: 22.
5 Amrani, I., Haddam, N., Garat, A., Allorge, D., Zerimech, F., Schraen, S., Taleb, A., Merzouk, H., Edme, J.L., and Lo-Guidice, J.M. (2020). Exposure to metal fumes and circulating miRNAs in Algerian welders. Int. Arch. Occup. Environ. Health 93: 553–561.
6 Armstrong, C.W., Stroube, R.B., Rubio, T., Siudyla, E.A., and Miller, G.B. Jr. (1984). Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch. Environ. Health 39: 276–279.
7 Aryani, A. and Denecke, B. (2015). In vitro application of ribonucleases: Comparison of the effects on mRNA and miRNA stability. BMC Res. Notes 8: 164.
8 ATSDR. 2019. ATSDR’s Substance Priority List [Online]. ATSDR. https://www.atsdr.cdc.gov/spl/index.html (accessed June 21, 2021).
9 Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C., and Nolan, B.T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51: 12443–12454.
10 Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12: 643972.
11 Banerjee, N., Bandyopadhyay, A.K., Dutta, S., Das, J.K., Roy Chowdhury, T., Bandyopadhyay, A., and Giri, A.K. (2017). Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology 378: 10–16.
12 Banerjee, N., Das, S., Tripathy, S., Bandyopadhyay, A.K., Sarma, N., Bandyopadhyay, A., and Giri, A.K. (2019). MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. Environ. Sci. Pollut. Res. Int. 26: 28052–28061.
13 Barcelo, M., Castells, M., Bassas, L., Vigues, F., and Larriba, S. (2019). Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 9: 13772.
14 Beck, R., Bommarito, P., Douillet, C., Kanke, M., Del Razo, L.M., Garcia-Vargas, G., Fry, R.C., Sethupathy, P., and Styblo, M. (2018). Circulating miRNAs associated with arsenic exposure. Environ. Sci. Technol. 52: 14487–14495.
15 Bernhoft, R.A. (2013). Cadmium toxicity and treatment. Sci. World J. 7: 394652.
16 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768.
17 Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G.J., and Guire, D.E. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30: 114–127.
18 Califf, R.M. (2018). Biomarker definitions and their applications. Exp. Biol. Med. (Maywood) 243: 213–221.
19 Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Pavkovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., Medeiros, M., Barbier, O.C., Perez-Maldonado, I.N., Sabbisetti, V.S., Bonventre, J.V., and Vaidya, V.S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 150: 653–662.
20 CDC. (2012). Response to Advisory Commitee on Childhood Lead Poisoning Prevention recommendations in Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf.
21 Chen, J., Lai, W., Deng, Y., Liu, M., Dong, M., Liu, Z., Wang, T., Li, X., Zhao, Z., Yin, X., Yang, J., Yu, R., and Liu, L. (2021). MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol. Lett. 345: 12–23.
22 Cheng, H., Hu, P., Wen, W., and Liu, L. (2018). Relative miRNA and mRNA expression involved in arsenic methylation. PLoS One 13: e0209014.
23 Cheng, H.H., Yi, H.S., Kim, Y., Kroh, E.M., Chien, J.W., Eaton, K.D., Goodman, M.T., Tait, J.F., Tewari, M., and Pritchard, C.C. (2013). Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8: e64795.
24 Clarkson, T.W. and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609–662.
25 Cohen, S.M., Arnold, L.L., Beck, B.D., Lewis, A.S., and Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic. Crit. Rev. Toxicol. 43: 711–752.
26 Collares, C.V., Evangelista, A.F., Xavier, D.J., Rassi, D.M., Arns, T., Foss-Freitas, M.C., Foss, M.C., Puthier, D., Sakamoto-Hojo, E.T., Passos, G.A., and Donadi, E.A. (2013). Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res. Notes 6: 491.
27 Correia, C.N., Nalpas, N.C., Mcloughlin, K.E., Browne, J.A., Gordon, S.V., Machugh, D.E., and Shaughnessy, R.G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. 8: 118.
28 Cory-Slechta, D.A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology 26: 491–510.
29 Cubadda, F., Jackson, B.P., Cottingham, K.L., Van Horne, Y.O., and Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579: 1228–1239.
30 Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., and Zhang, X. (2019). Circulating microRNAs in cancer: Potential and challenge. Front Genet. 10: 626.
31 de Araujo, M.L., Gomes, B.C., Devoz, P.P., Duarte, N.A.A., Ribeiro, D.L., De Araujo, A.L., Batista, B.L., Antunes, L.M.G., Barbosa, F., JR., Rodrigues, A.S., Rueff, J., and Barcelos, G.R.M. (2021). Association between miR-148a and DNA methylation profile in individuals exposed to lead (Pb). Front Genet. 12: 620744.
32 De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 46: 846–860.
33 Deng, Q., Dai, X., Feng, W., Huang, S., Yuan, Y., Xiao, Y., Zhang, Z., Deng, N., Deng, H., Zhang, X., Kuang, D., Li, X., Zhang, W., Zhang, X., Guo, H., and Wu, T. (2019). Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ. Int. 122: 369–380.
34 Ding, E., Guo, J., Bai, Y., Zhang, H., Liu, X., Cai, W., Zhong, L., and Zhu, B. (2017). MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-kappaB activity in mercury toxicity. Sci. Rep. 7: 15980.
35 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.
36 Dioni, L., Sucato, S., Motta, V., Iodice, S., Angelici, L., Favero, C., Cavalleri, T., Vigna, L., Albetti, B., Fustinoni, S., Bertazzi, P., Pesatori, A., and Bollati, V. (2017). Urinary chromium is associated with changes in leukocyte miRNA expression