Pricing Insurance Risk. Stephen J. Mildenhall

Читать онлайн книгу.

Pricing Insurance Risk - Stephen J. Mildenhall


Скачать книгу
0 0 100 0 1 0 100 1 100 1 0.250 0.75 25 0.75 2 101 7 0.125 0.625 12.625 4.375 3 108 1 0.125 0.5 13.5 0.5 4 109 1 0.0625 0.4375 6.8125 0.4375 5 110 1 0.125 0.3125 13.75 0.3125 6 111 79 0.0625 0.25 6.9375 19.75 7 190 8 0.125 0.125 23.75 1 8 198 2 0.0625 0.0625 12.375 0.125 9 200 0.0625 0 12.5 Sum 127.25 127.25

      Exercise 31 The loss outcomes are all distinct in Table 3.2. When there are ties, Step (3) is needed. Recompute the table if X1 can take values 1,9,10.

      Given the increasing sequence Xj, it is convenient to define j(a)=max{j:Xj<a} and j(0)=0. It is the index of the largest observation strictly less than a. For example, j(90)=6 and j(91)=7. It is used in calculations as follows. To compute the limited expected value of X at a > 0, the survival function form evaluates

      sans-serif upper E left-bracket upper X logical-and a right-bracket equals integral Subscript 0 Superscript a Baseline upper S left-parenthesis x right-parenthesis d x equals sigma-summation Underscript j equals 0 Overscript sans-serif j left-parenthesis a right-parenthesis minus 1 Endscripts upper S Subscript j Baseline normal upper Delta upper X Subscript j Baseline plus upper S Subscript sans-serif j left-parenthesis a right-parenthesis Baseline left-parenthesis a minus upper X Subscript sans-serif j left-parenthesis a right-parenthesis Baseline right-parenthesis (3.12)

      because ΔXj is the forward difference. It computes the integral as a sum of horizontal slices, e.g. the ΔX7 block in Figure 3.13. For a = 0 obviously E[X∧0]=0. For a=∞, j is set to j + 1, where j is the maximum index with S(Xj)>0, resulting in the unlimited E[X].

      The outcome-probability form is

      sans-serif upper E left-bracket upper X logical-and a right-bracket equals sigma-summation Underscript j greater-than 0 Endscripts left-parenthesis upper X Subscript j Baseline logical-and a right-parenthesis normal upper Delta upper S Subscript j Baseline equals sigma-summation Underscript j equals 1 Overscript sans-serif j left-parenthesis a right-parenthesis Endscripts upper X Subscript j Baseline normal upper Delta upper S Subscript j Baseline plus a upper S Subscript sans-serif j left-parenthesis a right-parenthesis Baseline period (3.13)

      It computes the integral as a sum of vertical slices, e.g. the ΔS5 block in Figure 3.13.


Скачать книгу
j X' ΔX' ΔS S X'ΔS SΔX'
0